AD-783 392

DEVELOPMENT OF A METHOD FOR THE ANALYSIS OF IMPROVED HELICOPTER DESIGN CRITERIA

Ross F. Metzger, et al

Kaman Aerospace Corporation

Prepared for:

Army Air Mobility Research and Development Laboratory

July 1974

DISTRIBUTED BY:

Unclassified AD- 183 392 SECURITY CLASSIFICATION OF THIS PAGE When Data Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE REPORT MUMBER 2 GOVT ACCESSION NO. RECIPIENT'S CATALOG HUMBER USAAMREL-TR-74-30 TITLE (and Subtitle) 5 TYPE OF REPORT & PERIOD COVERED DEVELOPMENT OF A METHOD FOR THE ANALYSIS Final OF IMPROVED HELICOPTER DESIGN CRITERIA 6. PERFORMING ORG. REPORT NUMBER R-1172 7. AUTHOR(s) CONTRACT OR GRANT NUMBER(A) Ross F. Metzger Richard C. Meier Arved Plaks Alex Berman DAAJ 12-72-C-0064 PERFORMING ORGANIZATION NAME AND ADDRESS 16 PROGRAN ELEMENT PROJECT, TASK APER & WORK UNIT HUMBERS Kaman Aerospace Corporation Old Windsor Road Task 1F1.62208AA8201 Bloomfield, Conn. CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE Eustis Directorate July 1974 U.S. Army Air Mobility R&D Laboratory 13. MINESROF 15. SETURITY CLASS, IN this report) Fort Eustis, Va. 23604 14 BONITORING AGENCY NAME & ADDRESS(II different tree: Controlling Office) Unclassified 15a. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Penath Approved for public release; distribution unlimited. 17 DISTRIBUTION STATEMENT (of the shattest entered in Block 20, If different tress Report) 18. SUPPLEMENTARY NOTES KEY WORDS (Continue on towersh side if necessary and identify by block number) Relicopter Cost Effectiveness Model 20 ABSTRACT (Continue on reverse eide if necessary and identify by black number) A method has been developed to allow the evaluation of helicopter design criteria. Analytical models have been developed which include mission analysis, performance relationships, statistical and analytical weight predictions, mission effectiveness (including payload utilization data and environmental statistics),

and fixed and operational cost estimations. The models are specifically designed to determine the cost effectiveness of a

DD 1 JAN 73 1473 EDITION OF 1 HOVES IS OBSOLETE

C. M. St. Space

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (Phen Date Entered)

The state of the s

SECURITY CLASSIFICATION OF THIS PAGE(Then Date Entered)

San Carlotte State of the State

Block 20

"two-point design criterion". A computer program known as ZODIAC II was developed to implement these and other analytical models. A user's guide for the program and illustrative computations are presented.

Unclassified

PREFACE

The work presented in this report was performed by Kaman Aerospace Corporation under Contract DAAJ02-72-C-0064 (DA Task 1F162208AA8201), for the Eustis Directorate, U. S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia. The program was under the technical direction of Mr. H. I. MacDonald of the Technology Applications Division. The authors wish to express their appreciation to Mr. MacDonald and also to Mr. J. P. Whitman and Mr. J. P. Trant, Jr., all of the Eustis Directorate for their helpful suggestions.

This project regrired efforts from a number of individuals in the Engineering Departments of Kaman Aerospace. Those making major contributions are as follows: R. Metzger, A. Plaks, R. C. Meier, A. Berman, H. C. Freeman, C. P. Harde, sen, A. Rodolakis, M. J. Tarricone.

THE PRESENTATION OF THE PROPERTY OF THE PROPER

TABLE OF CONTENTS

	PAGE
PREFACE	. iii
LIST OF ILLUSTRATIONS	. vii
LIST OF TABLES	. x
INTRODUCTION	. 1
ANALYTICAL MODEL	. 2
GENERAL ORGANIZATION	
MISSION DEFINITIONS	
PERFORMANCE RELATIONSHIPS	. 10
STATISTICAL WEIGHTS	. 29
ANALYTICAL WEIGHTS	_
EFFECTIVENESS	. 41
COST MODEL	
COMPUTATIONAL METHOD - USER'S GUIDE TO	
ZODIAC II	. 61
PROGRAM FEATURES	. 61
USERS RULES	. 64
SYNTAX RULES FOR EXPRESSIONS	
PROGRAM OPERATION	
PROGRAM LIMITATIONS	
ERROR CODES	. 75
SUGGESTIONS FOR THE NEW USER	
METHOD APPLICATIONS	. 81
UTILITY MISSION	. 81
WEIGHT SENSITIVITY	. 88
PAYLOAD UTILIZATION EFFECTS	. 97
GUNSHIP	. 100
CRANE	. 100
TRANSPORT	. 100
OBSERVATION.	106

TABLE OF CONTENTS (Continued)

							PAGE
CONCLUSIONS	 •		 •	•	•	•	108
LITERATURE CITED	 •	•	 •	•	•	•	109
APPENDIXES							
1. ZODIAC II PROGRAM LISTING	 	•	 •	•	•	•	111
II. MODEL LISTINGS	 	•	 •	,	•	•	163
LIST OF SYMBOLS	 		 •	•			201

LIST OF ILLUSTRATIONS

Figure			Pā	ge
1	Major Units of Model and Major Input Data	•	•	3
2	SFC Data Compiled for Aircraft Sizing Studies	•	•	13
3	SFC Variation at Part Power	•	•	15
4	Empirical OGE Hover Power Required	•	•	17
5	<pre>Speed-Fower-Weight-Drag Relationship for DLN = 4, S = .1</pre>	•	•	19
J	<pre>Speed-Power-Weight-Drag Relationship for DLN = 6, S = .1</pre>		•	20
7	<pre>Speed-Power-Weight-Drag Relationship for DLN = 8, S = .1</pre>	•	•	21
8	Speed-Power-Weight-Drag Relationship for DLN = 10, S = .1		•	22
9	Minimum Power in Forward Flight and Corresponding Airspeed			23
10	Stall Boundary as a Function of Disc Loading, Airspeed, and Drag		•	27
11	Drag Trends for Different Types of Welicopters	•	•	28
12	Main Transmission, Rate of Change of Weight Far Unit Change in Torque	•	•	35
£ 3	Main Rotor, Rate of Change of Weight Per Unit Change in Torque			40
14	Typica' Altitude - Temperature Data			44
25	Combined Altitude - Temperature Data			49

这是国际,这个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们

LIST OF ILLUSTRATIONS (Continued)

<u>Figure</u>		Page
16	Sample Utilization Data	. 50
17	Cost Model	. 54
13	Helicopter Initial Costs	. 57
19	Two-Point Design Gross Weights for Utility Mission	. 83
20	Two-Point Design Payloads for Utility Mission	. 85
21	Engine and Transmission Ratings for Two-Point Design Helicopters	. 86
22	Typical Cost Per Flight Hour Results for Utility Mission	. 87
23	Probability of Hover and VRC for Utility Mission	. 89
24	Overall Cost Effectiveness for Illustrative Utility Mission	. 93
25	Effect of 20% Increase in Empty Weight Model on Payload - Utility Mission	. 94
26	Effect of 20% Increase in Empty Weight Model on Cost Per Hour - Utility Mission	. 95
27	Effect of 20% Increase in Empty Weight Model on Probability of Hover - Utility Mission	. 96
28	Effect of 20% Increase in Empty Weight Model on Overall Cost Effectiveness of Utility Mission	. 98
29	Overall Cost Effectiveness for Fixed and Variable Payload for Utility	00

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
30	Gross Weights for Gunship Mission for 35°C	101
31	Overall Co.t Effectiveness for Gunship Mission for 35°C	102
32	Payloads and Gross Weights for the Crane	103
33	Overall Cost Effectiveness for Crane Mission	104
34	Overall Cost Effectiveness for Transport Model	105
35	Overall Cost Effectiveness for Observation Model	107

LIST OF TABLES

Table		Page
I	MISSION PROFILE	8
II	PRIMARY MISSION DEFINITIONS	11
III	INPUT DATA FOR PARAMETRIC WEIGHT ANALYSIS	31
IV	TYPICAL PARAMETERS	37
v	BLADE MATERIALS	38
VI	WEIGHT ANALYSIS - BLADES AND HUB	39
VII	AREAS USED IN HOVEF PROBABILITY CALCULATIONS	46
VIII	SAMPLE COST EFFECTIVENESS CALCULATION	52
IX	ERROR CODES	76

INTRODUCTIO:

A "single-point" design is defined as a helicopter which satisfies a specification defining a single altitude, temperature, payload combination, in addition to some prescribed mission. While it is admittedly an oversimplification to describe present helicopters as pure single-point design vehicles, this criterion is certainly a major factor in their final configuration.

A "two-point" design is defined as one which, in addition to the single-point criterion, has 'een sized so as to be able to make full use of the additional power, torque, and lifting capability available at some other altitude and temperature condition (usually lower and cooler).

A single-point design has the advantage of being the lightest weight vehicle capable of performing the stated mission. The single-point design vehicle will also have lower initial costs than any other vehicle capable of performing the same mission. However, since the engines in a single-point design vehicle must be capable of producing enough power to hover at high density - altitude, usually 4000 ft, 95°F, it will have power available at lower density altitudes which cannot be handled by its power transmission system and lifting capability which cannot be handled by the fuselage structure. In actual operation, the helicopter will either be performing below its engine capabilities or exceeding torque and structural limits.

The two-point design will be heavier and have higher initial costs. It will, however, be able to take advantage of (some of) its additional capability. It will be able to safely carry greater loads and will have greater endurance. Because it is less susceptible to aluse, its maintenance costs will be reduced. Depending on what is selected as the second design point, the particular operating conditions, and the appropriate effectiveness criteria, this vehicle can be significantly more cost effective.

It is the purpose of this project to develop a method for the selection of the most cost-effective second design point and to develop a better understanding of the concept and the factors which affect the selection.

ANALYTICAL MODEL

The analytical model used to describe the interrelationships between the various factors affecting the cost and the effectiveness is crucial to the success of the project. Because of the wide variety of possible models reflecting missions, vehicle concepts, technology levels, available data, and the approach preferences of the agency performing the evaluation, a rather general computer program was developed to handle models of varying complexity and organiza-All the details of the program are given in later sections. However, it is necessary to point out that the program is based on the implementation of analytical models in the form of logic diagrams. The diagrams contain computational units which are called "modules". The discussion of the models developed in this study will be presented in this framework, starting from the overall logic and progressing to the details of the individual computational units.

The analytical models developed in this report are considered to be adequate representations of the five types of helicopters included in this project, i.e., (1) utility, (2) cargo, (3) crane, (4) observation, and (5) gunship. These models, however, have been developed primarily as foundations to be built upon and modified as our knowledge increases and for the analysis of specific mission requirements. The computer implementation has been specifically developed to have the capability to easily handle minor or major changes in details or overall logic of the model.

GENERAL ORGANIZATION

The model is logically separated into four major units as illustrated in Figure 1. The first block indicates the preliminary design of the baseline single-point design. The major input items here are the single altitude and temmerature condition and the basic mission definition.

The second block to be entered after the single-point design has been achieved indicates the computation of the changes in the aircraft based on a specified second altitude and temperature condition.

The third block computes the cost of the heliconter including production and operating costs but excluding maintenance which will be a function of the actual missions flown.

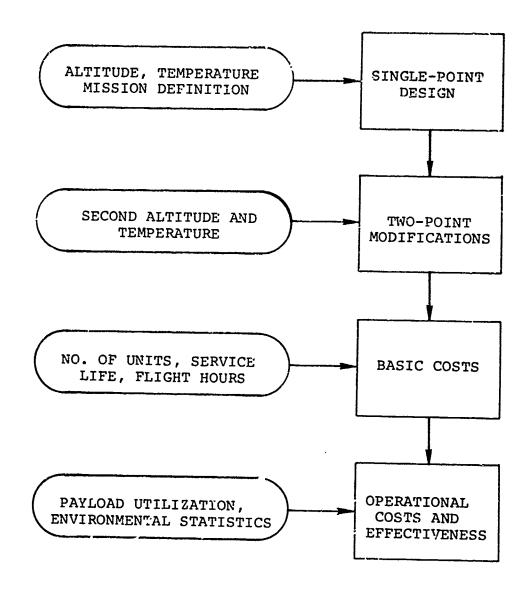


Figure 1. Major Units of Model and Major Input Data.

Primary data includes the production quantity, the attrition rate and service life and flight hours.

The last logical block makes use of payload utilization data, environmental data and results in the determination of total costs and effectiveness.

These four blocks will now be described in more detail in terms of the modules included in them. These modules represent the basic computation required. In this discussion, the function of each module will be indicated but the actual relationships used will be presented in later sections. The model described here is for a utility helicopter but is typical of all the models. When details are discussed, the differences between the models will be indicated.

Single-Point Design

The modules in the first major block of operations are computed in the following order:

SIZE
TO ALLOWANCE AND CRUISE
MAX RANGE
TOTAL FUEL
STAT WEIGHT
GROSS WEIGHT

The functions of each of these modules are given in the following paragraphs.

<u>SIZE</u> - This module computes the power required, based on the temperature, altitude, rate of climb, gross weight, and disc loading. In addition, such data as flat plate area, main rotor radius, and takeoff power are also computed.

TO ALLOWANCE AND CRUISE - This module computes the fuel consumed during the takeoff and cruise at $V_{\mbox{max}}$ segments of the mission.

MAX RANGE - The speed for maximum range is determined, and cruise at this speed is carried out with a fuel used computation.

TOTAL FUEL - In this module the required fuel reserve is added to the two previously determined increments to obtain total fuel requirement.

STAT WEIGHT - Based on a statistical weights model appropriate to the type of helicopter being studied, the weight of each component is computed.

GROSS WEIGHT - This module simply adds the empty weight, fuel weight, crew and payload.

Notice that the gross weight is required in the first rodule and is recalculated in the last. In operations weight is estimated and the entire process at rated until a converged gross weight is obtained. At mass point all the design parameters for the single-point design have been determined.

Two-Point Modifications

The second block of Figure 1 which determines the changes due to the additional design point contains the following modules in this order:

SIZE (Two-point data)
TO ALLOWANCE AND CRUISE
MAX RANGE
TOTAL FUEL
ANAL WEIGHT
GROSS WEIGHT TWO
TO ALLOWANCE AND CRUISE
MAX RANGE
TOTAL FUEL
PAYLOAD
ERROR

The first four modules are the same as used previously except they have as data the altitude and temperature of the two-point design.

ANAL WEIGHT - This module corrects the previously obtained weight by analytically taking into account the changes in torque and gross weight. These effects are used to modify the weight of the drive system, rotor, and fuselage.

GROSS WEIGHT TWO - The gross weight of the two-point design helicopter is obtained.

The next three modules determine the mission fuel with the new gross weight.

PAYLOAD - This module determines the payload capability at the first design point.

ERROR - The payload just determined is compared with the requirements. If the payload is deficient, the gross weight is increased by the deficiency and the entire block is repeated until convergence.

Basic Costs

The computation of the basic costs is accomplished with a single module:

PAPC COSTS

This module computes the production, attrition, crew, and miscellaneous costs on a per-hour, per-production helicopter basis.

Operational Costs and Effectiveness

PAYLOADS

OGWS TO ALLOWANCE AND CRUISE MAX RANGE TOTAL FUEL

MAINT COSTS

HOVER PROB

MEI

PAYLOADS - Thi, module refers to input tables to obtain discrete payloads and their respective utilization frequency.

OGWS - The gross weight with one of the above payloads is obtained.

The next three modules then, as previously, determine the total fuel for the standard mission with the specified payload. The process is iterated from the module OGWS until the fuel load (and gross weight) converges.

MAINT COSTS - The maintenance costs are computed based on the ratios of gross weights, computed MTBF's, and overload effects.

HOVER PROB - This module uses environmental data to determine the integrated probability that the helicopter can perform the required mission.

MEI - The mission effectiveness index and the overall cost effectiveness are computed.

MISSION DEFINITIONS

One of the objectives of this study is to develop models that have the capability to treat a mission profile consisting of a number of different types of mission segments. These are: (a) ground operation, e.g., engine start, warmup, and checkout; (b) takeoff; (c) climb; (d) cruise at given airspeed; (e) cruise at airspeed for maximum range; (f) dash at Vmax; (g) loiter; (h) hover, e.g., loading or unloading of cargo; (i) descent; and (j) landing with a fuel reserve. The five mission profiles compiled for the five types of helicopters were compiled in such a way that all of the above specified mission segments are represented. The one exception is the descent segment, which is only implied by the altitude change between the preceding and following mission segments, but for which no calculations are performed because past specifications reviewed do not allow distance credit for the descent segment. Additional segments were defined using recent RFQ's as samples to permit construction of any recently used mission profile.

Each mission segment is calculated for a given altitude and temperature. Depending on the type of segment, time, distance or airspeed is specified. In the case of climb and loiter, the airspeed is not directly specified but is determined as the speed for minimum power. For cruise mission segments, the airspeed is either specified or calculated to meet specified criteria as will be explained later. In any case, the calculation procedure includes checks that no applicable stall or power or torque limit is exceeded.

Performance at each mission segment is calculated for the gross weight at the start of the mission segment. Weight reduction due to fuel consumption is accounted for by subtracting used fuel weight for each succeeding mission segment. Payload changes, as due to unloading or loading of cargo, rescuees, troops, or armament, may be accounted for in determination of the initial gross weight of any segment.

The drag changes due to off-loading or picking up of external cargo, or disposing of weapons during the mission can be accounted for similarly to payload changes discussed above.

Table I is a listing of segments included in the five mission profiles. The approaches to the analysis of these segments are given in the following paragraphs.

		······································	~				
·1	ABLE I. MISSION	PROFILE					
Mission Segment	TAS	Distance	Time	Power			
Ground Operation	0	0	Spec.	Fliaht Idle			
T.O.	0	0	Spec.	Spec.			
Climb	Look up sped for min. power	Calc	Calc	Spec.			
Cruise @ Given A/S	Spec.	Calc Spec.	Spec. Calc	Calc			
Cruise @ Given A/S for Maximum Range	Calc	Calc Spec.		Calc			
V-max, Dash	Calc	Calc Spec.		Spec.			
Loiter	Look up speed for min. power	Calc	Spec.	Calc			
Hover	0	G	Spec.	Calc			
Reserve Any mission segment above or percent initial fuel or both							
Calc = Calculated	Spec. = Spec	ifv					

而是一个人,是一个人,是一个人,他们是一个一个一个一个一

Ground operation fuel flow is determined directly from engine statistics. The engine is assumed to be at flight idle setting as would be the case for preflight checking of aircraft systems. Review of engine data showed that fuel flow is a function of engine size and pressure altitude resulting in:

FL = .15 (PRA) (PR) (TIM) /60

Fuel allowance for the takeoff mission segment is calculated per military specifications as fuel used at a given power and in a given time period. The power usually specified is the maximum continuous power rating. The calculations procedure selects the lesser of the two - engine or transmission power level - for the specified rating and atmospheric conditions and determines the fuel flow for that using parametric part power SFC vs referred power variation data.

The climb segment requires that both initial and final altitudes and temperatures are specified. Power rating is specified as either intermediate or maximum continuous, and the calculation procedure determines average altitude and temperature. The engine power available at the specified rating and average atmospheric conditions is compared with the transmission limit, and the lesser of the two is used. The average fuel rlow is determined now for this power. Time-to-climb determination involves determination of minimum level flight power from the appropriate table. Then,

$$R/C = \frac{33,000 \text{ (HP available - minimum HP required)}}{\text{Gross Weight}}$$

and

Time =
$$\frac{A \text{ Altitude}}{R/C}$$

With known time and fuel flow, the fuel used is now calculated.

Range for cruise at a given airspeed is determined in a very straightforward manner. Power is determined at the specified airspeed from appropriate parametric power required tables, for which fuel flow may now be determined using part power SFC data. Either time or distance may be specified and the other is calculated. The fuel used is simply the fuel flow times the time.

Cruise at airspeed for maximum range is similar to the preceding segment except that the airspeed is first determined by a procedure where specific air range is calculated over a range of airspeeds. Peak value is determined, and the corresponding airspeed is then compared to stall, transmission or power limited airspeed. The least of these becomes the cruise speed for maximum range and is used for subsequent calculations, as described above.

Rarge at maximum airspeed is specified for either intermediate or maximum continuous power rating. If intermediate power is specified, then the airspeed is defined as the dash airspeed. In either case, engine power available under the given atmospheric conditions is checked against transmission limit, and the smaller of these is used for airspeed determination.

airspeed is checked so that it does not exceed stall limi airspeed. Power, the fuel flow, and fuel load are calcul. d as described before.

For all of the range segments, the distance may be specified as the total required distance less distance covered during the preceding climb segment, if any. This accounts for these range or radius missions where mission profile requires "climb on course to cruise altitude...".

Loiter airspeed and power are determined from tables of performance at minimum power in forward flight. Determination of resulting fuel flow and fuel is straightforward.

Hover is determined using the parametric hover power equation. Fuel flow and fuel load determination is straightforward.

Reserve may be specified as a percentage of initial fuel or it may be specified as any other mission segment; i.e., a specified time or distance at some specified airspeed or power level. Most commonly used percentage is 10 percent.

Table II lists the primary mission (first point) definitions used in this study. The intention is to cover as many types of segments as possible and to specify representative missions.

PERFORMANCE RELATIONSHIPS

The performance and weight models consist of relationships to permit specified requirements to be combined with a given technology level to result in defining aircraft general characteristics. The requirements include ability to hover or to have a maximum speed capability, ability to fly specified mission profiles with a specified payload. Technology level is defined by characteristics of helicopter components that will be attainable at a given time, such as component weight/size relationships, engine SFC characteristics, aircraft drag, power-weight-speed relationships, etc. The application of the performance and weight models results in characteristics such as rotor dimensions, weight buildup and engine ratings.

TABLE II.	PRIMARY	MI	SSION	DEF	INITIONS	<u> </u>	
	Pressure Altitude (ft)	0AT (°C)	TAS (kn)	Time (min)		Change in Payload (1b)	Change in Drag (ft ²)
UTILITY - PL = 2640 1b							
Ground Operation V _{max} , MCP Best Cruise Speed Reserva: Best Cruise	4000 4090 4000 4000	35 35 35 35	0	8 20 80 30	0		
GUN SHIP - PL = 2000 1b							
Cruise @ Given A/S Hover Vmax, MCP Cruise @ Best Cruise A/S	4000 4000 4000 4000	35 35 35 35	100 0	38 32 8 6	0	-1340*	-5
Reserve: Cruise @ Best Cruise A/S	4050	35		30			
CRANE - PL = 45,000 1b							
Ground Operation T.O. Allowance (MCP) Hover Max. Range Cruise Hover W/O Cargo Max. Range Cruise Reserve: Max. Range Cruise	0 0 0 0 0	35 35 35 35 35 35 35	0 0 0	10 2 10 10	0 0 50 0 50	-45,000	-100
OBSERVATION - PL = 300 1b	_						
T.O. Allowance (MCP) Endurance (Loiter) Reserve - 10% of Initial Fuel	SL	15 15	0	3 180	0	0	
TRANSPORT - PL = 25,000 1b							
T.O. Allowance (MCP)	SL	15	0	3	0	0	
Cruise (MCP) (Descend)	7000	1		0	100 0		
Ground Operation Climb	SL	15	0	5	Ŏ	-25,000	
Cruise (Best Range) Reserve - 10% of Initial Fuel	7000	1	_		100		
* Expendable Ordnance						·	

In this section, performance related technology levels will be discussed. It should be noted that in some cases the values chosen only serve as samples to illustrate the methodology for determining an optimum two-point design and do not necessarily represent the actual values.

Engine Performance

The performance of a "rubberized" turpeshaft engine is characterized by how power available varies with atmospheric conditions and how specific fuel consumption is related to rated power and to part power condition.

Turboshaft engine rated power available varies with temperature, altitude and forward speed. The last effect, ram, is ignored as negligible for the relatively low-speed regime of helicopters created in this study. The effect of atmospheric condition was determined empirically from current engine data as:

$$PA/PRA = PR[1 - 2.08(TR -1)]$$

where PRA is the highest power rating given at 15°C, SL and V=0, which in this study was equated to the 30-minute, intermeliate power rating. Similarly, the ratio of maximum continuous power to the highest engine rating was determined empirically from current engine data resulting in:

$$P/PA = RA = .9$$

HEREN AND ALTON AND ALTON

In this study the fuel consumption rate is determined for the specified power level using the "rubberized" SFC versus power curve keyed to an SFC at rated power. The SFC at rated power may vary from .55 to .7 for current engines for .36 to .49 for 1980's engines. This data is presented in Figure 2.

For this study the current engine technology data was put into an equation form as:

$$SFO = 1.136(PRA/NEN)^{-.105}$$

where NEN is the number of engines. Thus, PRA/NEN is the rating of one engine. SFO applies to the highest power rating at SL, 15° C, V = 0.

For advanced engines for 1980 and beyond, a 20-percent reduction of SFL is projected.

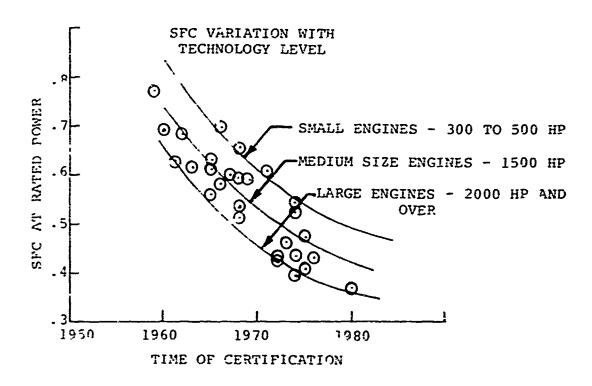


Figure 2. SFC Data Compiled for Aircraft Sizing Studies.

The SFC at rated power is determined by technology level, engine size, tradeoffs of engine simplicity versus engine efficiency, and development history of the engine. The smaller engines have higher SFC than bigger engines because bigger engines can be designed with lower percentage losses. Simplicity, such as the use of a fixed shaft, is achieved at the expense of efficiency. During the development cycle of an engine, SFC usually improves; however, growth usually occurs to obtain more power within a given engine size envelope, and SFC improvement is considered of secondary importance.

The technology level is identified mainly by turbine inlet temperatures used and pressure ratios employed. These factors seem to go up hand in hand and result in lower SFC's and lower engine specific weight. The temperatures with current values from 1600° to 2000°F will increase to 2400°F in the 1980-1990 period requiring advanced materials and turbine cooling in various degrees. Pressure ratios similarly will increase from the current 6:1 to 14:1 range to up to 20:1.

In treating engine statistical data, the rated power was selected as the highest thermodynamic, i.e., turbine inlet temperature limited, rating given, excluding any "emergency" ratings. Any derating due to gearbox limits was ignored. The highest, i.e., T.O. or maximum (10 minutes), ratings were used, if given, instead of the 30-minute limits, assuming that the time ratings only express limits imposed to achieve certain TBO. In effect, it was assumed that given engine would have the same SFC at the highest rating regardless whether it is a 5-, 10-, or 30-minute rating.

For fuel consumption determination at part power operation, the SFC versus referred power was "rubberized" by generalizing it in terms of SFC and power at rated conditions, i.e., SFO and PRA resulting in SFC/SFO versus PRF/PRA. From the study, two shapes appeared as shown in Figure 3. The flatter of the two curves appeared associated with some of the proposed (mostly paper) engines, indicating a possible new trend in turbine design optimization in which the engine manufacturer's seem to take into account the fact that a good portion of the time engines are operated at part power and that it is here where low SFC's pay off. However, it has been noted that some prototype engines, which were initially designed to have this flat trend, seem to have moved back toward the current trend, throwing some question as to the achievability (or the will to achieve) of the projected flat trends. Either curve may be used to determine SFC at any power level once rated power and the corresponding SFC have been selected.

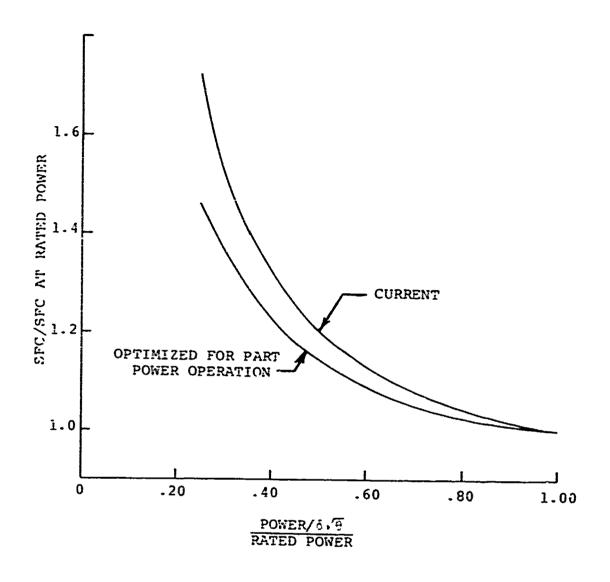


Figure 3. SFC Variation at Part Power.

The ram effect due to forward flight reduces the SFC slightly. Due to the relatively low forward speed of the helicopters studied, the ram may be ignored. The expression by which fuel consumption can be calculated is then:

$$W_{rt} = (P) (SFQ) (SSF) KFF$$

where P is the given power at the desired airspeed, SFO is the SFC at rated power determined as a function of technology level and engine size, SSF is the SFC increase factor for part power operation determined as a function of PRF/PRA and KFF is any loss or allowance factor applied. Since in this study relative fuel loads are sought, application of a loss or allowance would not affect the conclusions of the study, and thus, for simplicity, none are applied.

Hover and Vertical Flight

A substantial body of statistics exists for various helicopters which establish a power required. Blockage losses, drive system losses, tail rotor and accessories power were not extracted from the statistics. Thus, the variables are gross weight and (total) power at the engine output shaft. Data form is SW/SHP vs DL/DR as is shown in Figure 4.

This is consistent with the traditional $C_p/z = f(C_T/z, z)$ presentation if the latter is expanded for a specified R and DL. The curve may be expressed in equation form as SHP = (.051)(GW)(DL/DR)·41 at a specified rate, VRC.

Power to climb without forward speed can be calculated as power required to hover OGE plus an increment for the potential energy change. Assuming a climb efficiency of 1.25 results in a hover power adjustment as:

$$\Delta SHP = (VRC) (GW) / (33000) (1.25) = .00002424 (VRC) (GW)$$

If it should be desirable to size the engine or transmission to meet a given vertical rate of climb requirement with a specified margin of power, then the above may be combined to result in:

SHP =
$$[(.051)(GW, (DL/DP)^{.41} + SHP)/(1 - P4/100)$$

where PM is the desired power margin in percent.

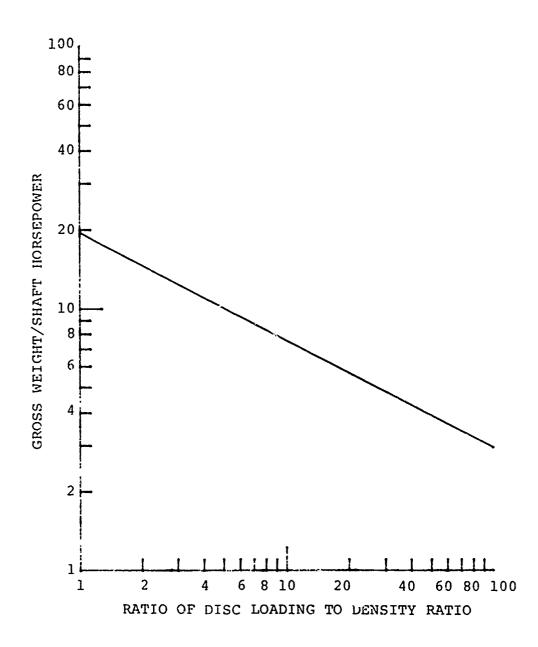


Figure 4. Empirical OGE Hover Power Required.

Speed-Power

The aircraft speed-power-weight-drag relationship is a function of rotor characteristics, such as airfoil sections used, taper, twist, disc and blade loadings (and thus solidity), tip speed schedule (and thus tip Mach number), etc.

For this study, data were generated for the following characteristics:

Airfoil: NACA 23012 (constant)

Number of Blades: 4 Solidity, S 0.1

Tip Speed 700 fps (constant)

Taper None

The airfoil selected is for a current state-of-the-art airfoil with good stall characteristics. The drag-lift characteristics are well established throughout the Mach number range. The other listed characteristics were chosen as typical for helicopters currently in use or in development. The data were obtained by a standard rotor performance program involving an iterative numerical solution of the blade flapping equations of motion.

TO AND THE PROPERTY OF THE PRO

The results are used in the model in a parametric form as illustrated in Figures 5-8. Data are entered into the program in two ways to allow determination of airspeed for a given power and determination of power at a given airspeed.

TAS = f(DLN, POW, FOW)

POW = f(DLN, TAS, FOW)

These tables apply for speeds above speed for minimum power with accuracy improving as speed is increasing. Accuracy of the tables reduces at reduced airspeeds due to the shallowness of the slope of power vs airspeed. For this reason, separate data, as shown in Figure 9, are entered for speeds for minimum power to accommodate performance related to this speed such as loiter and maximum rate of climb. This data again are in two forms:

TAS = f(DLN, FOW)

MRHP = f(DLN, FOW)

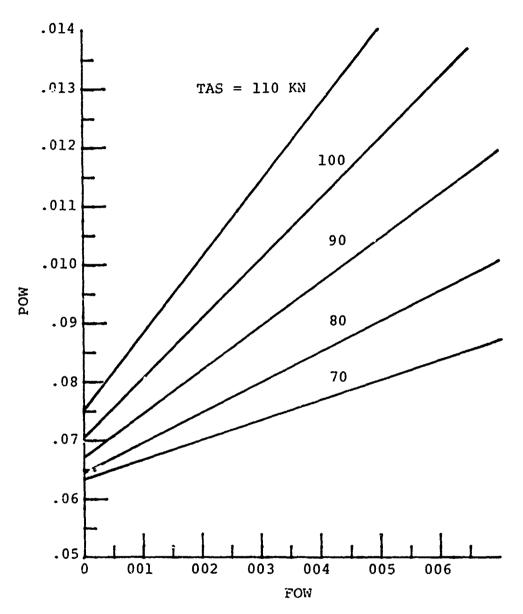


Figure 5. Speed-Power-Weight-Drag Relationship for DLN = 4, S = .1.

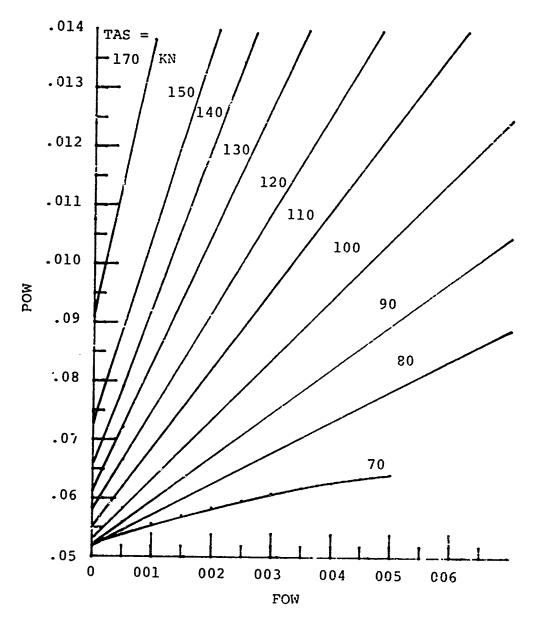


Figure 6. Speed-Power-Weight-Drag
 Relationship for DLN = 6,
 S = .1.

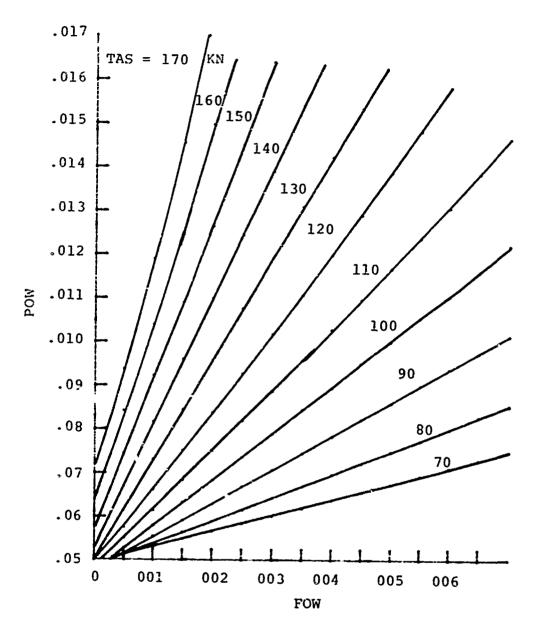


Figure 7. Speed-Power-Weight-Drag
Relationship for DLN = 8,
S = .1.

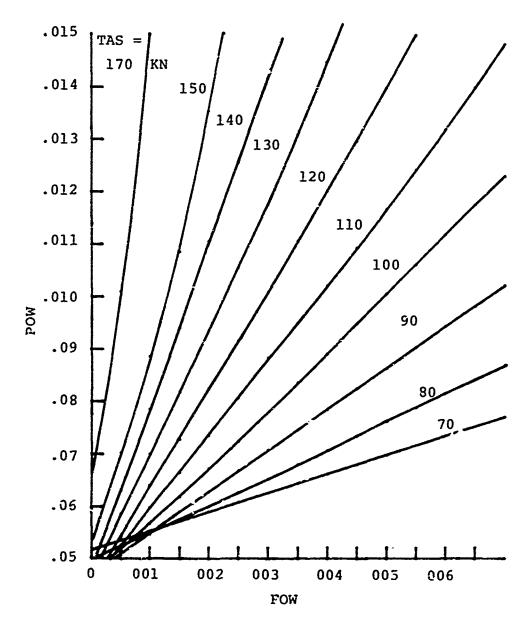


Figure 8. Speed-Power-Weight-Drag
Relationship for DLN = 10,
S = .1.

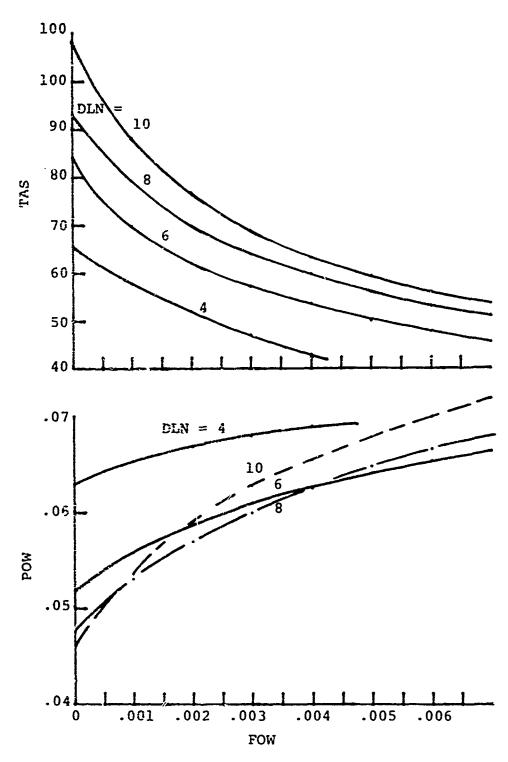


Figure 9. Minimum Power in Forward Flight and Corresponding Airspeed.

The parametric form used in the table is the result of determining the most meaningful way of presenting the power-speed-lift-drag relationship for a given rotor geometry. The early forms of C_p - C_T - μ types of presentation have lost some of their usefulness ever since Mach number effects have been taken into account. The form used, however, is consistent with C_p/σ - C_x/σ - C_L/τ - $V/\Omega R$ - σ - M relationship and has the advantage over the latter that it is closer to the dimensional form. In this semi-dimensional form, rapid comparisons can be made of data used with other estimates or test data and corrections made incrementally or percentagewise as desired.

The relationship between the traditional coefficient type formulation and the used semi-dimensional form is illustrated by the following. C_p/σ is defined when C_χ/σ , C_L/σ , σ , $V/\Omega R$ and M are given.

There is no increase in number of variables to define a condition if instead of $V/\Omega R$ and M, one would specify V and ΩR and assume a nominal speed of sound to relate these as

$$\Omega R = Mc/(1 + V/\Omega R)$$
$$V = (V/\Omega R) \Delta R$$

The remaining coefficients can be rewritten as:

$$POW = \frac{(C_{p}/\sigma)A + \sigma + \sigma(\Omega R)^{3}/550}{(C_{L}/\sigma)A + \sigma + (-R)^{2}} = \frac{C_{p}/r}{C_{L}/\sigma} \frac{\Omega R}{550}$$

$$q = .5 + \rho + V^{2} = .5(DR) + \rho_{o} (V/\Omega R)^{2} (\Omega R)^{2}$$

$$FOW = \frac{F_{x}(DR)}{GWq} = \frac{(C_{x}/\sigma)A + \sigma + \rho(\Omega R)^{2}(DR)}{(C_{L}/\sigma)A\sigma\rho(\Omega R)^{2}.5(DR)\rho_{o} (V/\Omega R)^{2}(\Omega R)^{2}}$$

$$= \frac{C_{x}/\sigma}{C_{L}/\sigma} \frac{1}{.5\rho_{o} (V/\Omega R)^{2}(\Omega R)^{2}}$$

$$DL\Omega = \frac{GN}{(A)(DR)} = \frac{(C_{L}/\gamma)A + (DR) + \rho_{o} (-R)^{2}}{(A)(DR)} = (C_{L}/\gamma) \cdot \rho_{o} (-R) = 0$$

Ir the above, the use of a nominal speed of sound may, for some off-design condition, introduce a small error. With a $20\,^{\circ}\text{C}$ change in the temperature, a 3-1/2-percent error in resulting Mach number is introduced. This, however, should be an acceptable penalty for a study such as this, and thus the data presented is generated for C = 1117 fps only.

Variation of solidity does not require separate charts but can be accommodated similarly to Reference 1. This reference substantiates the equivalence of a drag change to inflow change resulting from a solidity change. In this study the data was compiled for S = .1; performance for any other S can be obtained by entering the data with an adjusted equivalent flat plate drag area:

说话这些是否是这种的是不是这种的,我们就是不是不是不是,我们也是不是我们的是不是我们的,我们也是不是这种,我们也不是这个人,也是这个人,也是是这种人的,也是是这 19

$$F = F_{\text{actual}} + \frac{(GW) (BL) (S - .1)}{4q^2}$$

The adjusted F is now used to calculate FOW as before. POW is determined from the data at the desired normalized blade loading BLN. The chart values in the presentation of this report must be used as DLN/S. For example, values shown for DLN = $_6$ lb/ft² and S = .1 are really for a BLN = $_6$ /.1 = $_6$ 0 lb/ft².

The tip speed in this study was chosen as 700 fps representing the current state-of-art average. The outcome of this study will not be significantly different if run at any other tip speed. However, if it should be desired to repeat the study for any other tip speed, new power required must be calculated. From this, either a new data table must be generated or a suitable adjustment found for the existing data.

Geometry of the rotor blade naturally affects the power levels and is an inherent part of any performance presentation. The characteristics used here, such as airfoil and twist, are current technology and should yield representative results. However, as in the case of tip speed, should it be desired to investigate some different geometry, then corresponding power data must be calculated, from which a new table can be generated or a suitable adjustment found for the data now used.

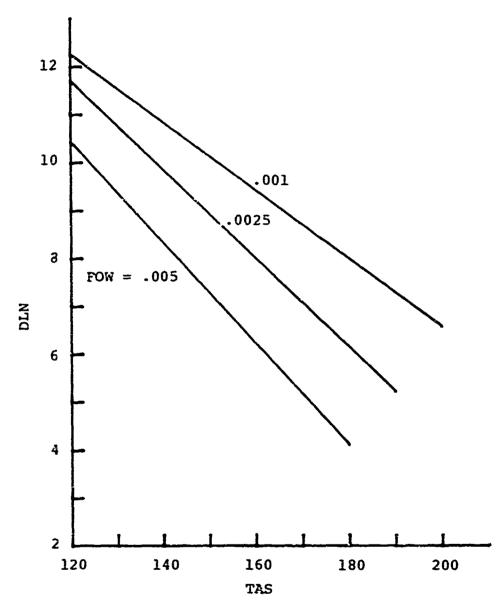
The tables yield main rotor power. To obtain total power, i.e., power at the engine output, a factor was determined which includes the effects of tail rotor power, accessories power, and drive system losses. The factor applies only to forward flight and is:

MRHP/SHP = KPP = .9174

Stall |

The ultimate limiting factor on airspeed is stall of the retreating blade. For the purposes of this study, the stall boundary was determined consistent with the data generated for forward flight. Thus, they contain the same assumptions as the power required. Stall was defined at the airspeed when the angle of attack reached 12 degrees at the outboard section of the blade. The angle was found to be just below the stall caused break in power vs lift curves. The data is shown in Figure 10. The data are entered into the program in the form of an equation:

TAS =
$$70 + 15.7(15 - DLN)/(1000 FOW)$$
. 2598


For operational use, helicopter maximum airspeeds are limited to airspeeds below stall. The margin, SM, specified for this study is 10 knots.

Drag

Drag of aircraft is most conveniently represented as a function of gross weight to the two-thirds power, a relation-ship which assumes that a characteristic dimension exists which, when cubed, gives a volume proportional to gross weight, and when squared, gives an area proportional to the equivalent flat plate drag area. Statistics from various current and projected helicopters have led to the trends shown on Figure 11.

ALTON FOR A STATE OF THE PROPERTY OF THE PROPE

The statistical drag data is treated as a function of maximum gross weight of the helicopter. There is no assurance that helicopter cargo spaces are designed to carry the max_mum structural weight limited payload. In fact, for many helicopters the maximum gross weight has grown by a third, without a corresponding increase in cargo space. However, since the cargo-containing fuselage, as a rule, makes up less than a quarter of the total drag, the cargo space is not a significant factor. It was felt that the total drag is more related to the maximum gross weight of the aircraft which dictates rotor size so that gross weight adequately represents the aircraft. In the case of helicopters with considerable development and growth behind them, the latest gross weight was used for correlation purposes. Then, helicopters at their maximum GW exhibit higher disc lcadings than originally designed for. Thus, the statistics reflect the tendency for new aircraft to be designed for higher disc and power loadings.

TO SEE AND A SEE THE PROPERTY PROPERTY OF THE PROPERTY AS A SECURITY OF THE PROPERTY OF THE PR

Figure 10. Stall Boundary as a Function of Disc Loading, Airspeed, and Drag.

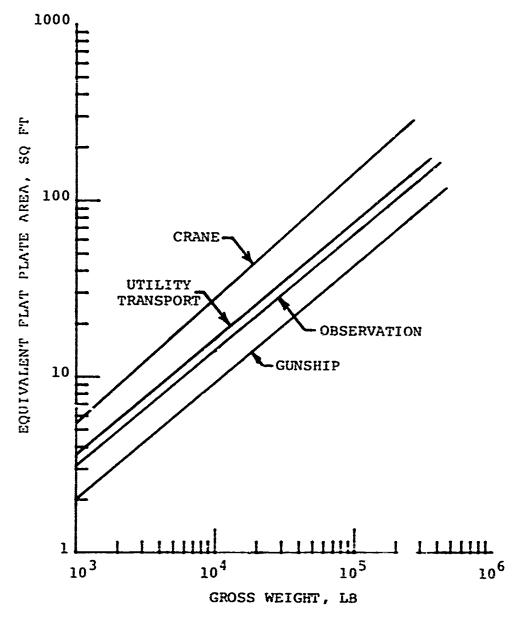


Figure 11. Drag Trends for Different Types of Helicopters.

Depending on the type of helicopter, the loading density varies and thus the volume-gross weight relationship. Therefore, different fairings were drawn for the various types of helicopters.

These expressions cover only the basic aircraft without external stores or cargo. These items have a characteristic of themselves and are treated as an add-on to the basic drag. In this study, it is assumed that all fuel is carried internally, i.e., no external fuel tanks are used. Furthermore, it is assumed that no external stores are carried by the observation-utility-transport categories of aircraft. The weapons drag of the gunship is assumed at an equivalent flat plate drag area of 5 ft², and the cargo drag area for cranes is assumed to be 100 ft². If desired by the user of the program, these add-ons can also be rubberized by use of suitable statistics.

The above resulted in the following relationships to be used in this study.

Utility, transport	$f = .035 \text{ Ge}^{2/3}$
Observation	$f = .03 \text{ GW}^2/3$ $f = .02 \text{ GW}^2/3 + 5$ $f = .07 \text{ GW}^2/3 + 100$
Gunship	$f = .02 \text{ GW}_{3/3}^{2/3} \div 5$
Crane	$f = .07 \text{ GW}^{2/3} + 100$

STATISTICAL WEIGHTS

The statistical weight model used for the estimation of conventional (single point) designs was developed to represent the five types of helicopters under consideration and to use relatively limited data such as would be available during a typical predesign situation. This model is a further development of that given and fully documented in Reference 2. The statistical trends were based on analyses of the following helicopters:

CH-3C	HH-2D
CH-34	HH-52
CH-37	UH-2A/B
CH~53A	UH-19
SH-3A	UH-1B
S-52	UH-1D
S-61	UH-1N

The equations are listed in the STAT WEIGHT module and are not repeated here. There are three types of data used in the parametric equations, as follows:

Basic Input Data - These data either define characteristics of the vehicle or are a result of performance calculations. Examples are: Number of engines and rotor radius. The required input data are listed in Table III.

Intermediate Data - Actual values may be used if known from design definition. If an actual value is not available, an intermediate data value can be calculated using input data and the appropriate equations. An example is Tail Rotor Radius. If not known from design definition, the tail rotor radius (in feet) is estimated, using input data only, by .087 (rotor radius)1.22.

Calculated Weight Data - The weight calculated by a weight equation is used in a subsequent weight equation. An example is Blade Weight, which is subsequently used to calculate Hub Weight.

ANALYTICAL WEIGHTS

The statistical weight model is appropriate for the single-point baseline vehicle. The modifications resulting from the additional design point will result in changes in the structure, drive system, and rotor. These changes are due to the changes in gross weight and engine and rotor torque. The other major elements (engine, fuel system, and fixed weights) of the vehicle are assumed to change only insignificantly since the basic mission is unchanged.

Structure

The various elements of the structure of a typical helicopter were examined from the point of view of whether the weight of the element was significant and what kinds of loads were the major design consideration. It is assumed that limit load factors, sink speed, and crash criteria are not changed with the changes in gross weight due to the second design point criteria.

The elements of the structure considered include the forward fuselage, center fuselage, tail cone, vertical tail (tail rotor pylon), horizontal tail, landing gear, engine and transmission mounts and carry through structure. In general, the items which contribute significant weight can be lumped together as the fuselage and tail and the landing gear. Some of the components are designed by steady flight loads, some by vibratory loads, some by landing loads, some by cargo loads, etc. The steady loads can be expected to be proportional to the gross weight. Landing loads also are proportional to gross weight. The vibratory loads are the

TABLE III. INPUT DATA FOR PARAMETRIC WEIGHT ANALYSIS

Symbol		Data
AG	=	Number of Auxiliary Landing Gears
BF	=	Blade Folding Option (= 1 if used, = 0 otherwise)
BRK	=	Main Rotor Brake Option (= 1 if used, = 0 otherwise)
CAP	=	Gallons of Fuel - Gal.
СВ	=	Blade Chord - Feet
EDS	=	<pre>Engine Drive Shaft Option (= 1 if used, = 0 otherwise)</pre>
EN	=	Number of Engines
HP1	=	Rotor Horsepower - hp
HP2	=	Installed Horsepower - hp
ITR	¥	<pre>Intermediate Tail Rotor Gearbox Option (= 1 if used, = 0 otherwise)</pre>
KLG	=	Landing Gear Geometry - Values/Configuration .0157 - Skid Gear .0247 - Sponson Mounted .0280 - Quadricycle
		.0329 - Tricycle - Fuselage Mounted .0405 - Crane - Straddle Type
KNAC	: =	Nacelle Arrangement - Values/Configuration .96 - Twin Engines Mounted to Transmission Forward or Aft of Main Rotor 1.19 - Single Engine Mounted to Fuselage Forward or Aft of Main Rotor 1.23 - Twin Engines With Combining Gearbox 2.26 - Twin Engines Outboard of Main Fuselage Add Factors for More Than Two Engines
MOW	=	Maximum Operating Weight - Lb
NMR	=	Number of Main Rotor Blades

		TABLE III - Continued
Symbo	01	Data
NR	=	Number of Main Rotors
NULT	=	Ultimate Load Factor
P	=	Number of Passengers
КW	=	Main Rotor Radius - Feet
s	=	Main Rotor Solidity
TAF	=	Type of Aft Fuselage - Values/Configuration
		 8 - Full Fuselage Depth at Splice of Main Fuselage to Aft Fuselage. Example: SH3A 9 - Tailboom Configured for Rear Ramp. Example: CH53 10 - Tailboom Without Rear Ramp. Example: UH19
		13 - Full Fuselage Depth at Splice of Main Fuselage to Aft Fuselage and With a Tail Wheel Full Aft. Example: HH2D
		15 - Tailcone Upswept From Fuselage Splice. Example: UH1D
sw	=	Total Wing Area
TAG	=	Type of Auxiliary Gear - Values/Configuration
		<pre>0 - Observation 0 - Gunship 1.0 - Utility 2.5 - Transport 15.5 - Crane</pre>
TAR	=	Armament Provision and Plating - Values/Configuration
		600 - Gunship (0 otherwise)
TEL	=	Type of Electronics - Values/Configuration (Depends on A/C Designation)
		.42 - Observation .75 - Crane 1.00 - Utility 1.16 - Transport 1.25 - Gunship

	TABLE III - Continued							
Symbol Data								
TPU =	Auxiliary Power Unit Option (= 1 if used, 0 otherwise)							
T'PY =	Type of Pylon Configuration - Values/Configuration (Depends on Type of Aft Fuselage)							
	 14 - Tailcone Upswept From Fuselage Splice. Example: UH1D 25 - Tailboom Without Rear Ramp. Example: UH19 45 - Tailboom Configured for Rear Ramp. Example: CH53 48 - Full Fuselage Depth at Splice of Main Fuselage to Aft Fuselage. Example: SH3A 62 - Full Fuselage Depth at Splice of Main Fuselage to Aft Fuselage and With a Tail Wheel Fuil Aft. Example: HH2D 							
VM =	Main Rotor Tip Speed - FPS							
WPL =	Desired Weight of Payload							

most difficult to generalize upon. The transition flight regime is when the highest vibratory loads can be usually expected. Experience indicates that the vibratory loads are proportional to GW, increasing by about 4 to 8 times the ratio of delta GW to GW.

Simple models of typical structures have indicated that the weight of the structure will be approximately proportional to ratios of the design loads. This is, of course, most true when relatively small changes are considered.

The types of loads which design the separate components will vary between types of helicopters and even between different helicopters of the same type. Some elements are not strictly designed by loads, for example, by the use of minimum gage skins and landing gear mechanisms.

Because of the great uncertainty in generalizing the structural weight changes a simple but reasonable approximation is made in the model used in this study. It is assumed that the change in weight of the fuselage, tail, and landing gear of the second design point vehicle is directly proportional to the change in gross weight from the first point design. Typically, the structure involved here represents about 10 percent of the gross weight, and a 50-percent increase in gross weight will result in a structural weight increase of about 5 percent of the gross weight.

The computer program allows easy modification of this approximation when it is considered necessary and when specific aircraft are being studied.

Drive System

The methods developed in Reference 2 were used to determine the rate-of-weight change with torque for the main transmission. The analysis includes the optimized weights of shafts, bearings, case, and all gears. For this study, the following gross weight helicopters were studied: 3000, 15,000, 25,000, 100,000, 200,000. These are considered typical of observation, utility, gunship, cargo, and crane helicopters.

Figure 12 illustrates the results of the analysis. While the data has been specifically obtained for the main transmission, the percentage change is assumed to apply to the entire drive system.

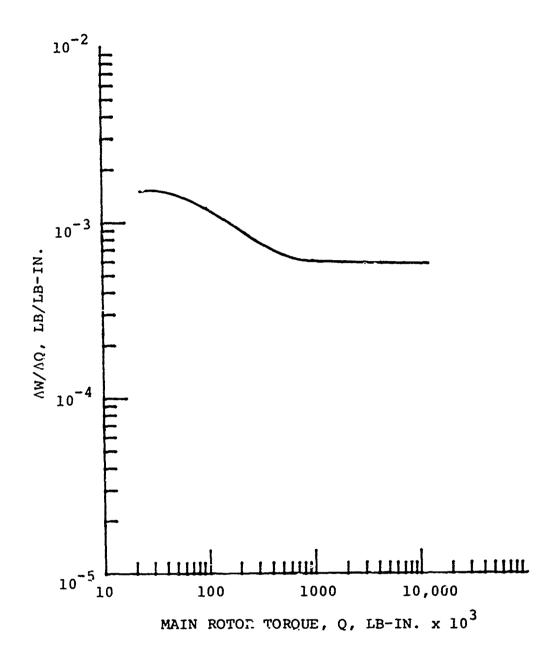


Figure 12. Main Transmission, Rate of Change of Weight Per Unit Change in Torque.

Rotor

的,我们们们的时候,我们们们的时候,我们们们们的时候,我们们们们们们的时候,我们们们们们们的时候,我们们们们的时候,我们们们的时候,我们们们们们们们们们们们们们

The relationship between rotor torque and weight-change-with torque is determined. To facilitate this, it was decided to limit the study to the components which are more directly related to the imposed loads. These consist of the blades and the hub. The retentions, controls, bearings, etc., can be idealized structurally; however, because these items have so many mechanical configurations, the calculated component weights would vary directly from actual cases. It is assumed that the weights of these items vary identically as the analytically determined blades and hub.

The approach used nere is as follows.

- Assemble data providing design parameters (disc loading, tip speed, etc.) for various gross weight helicopters. Fit equations to these data.
- 2. Choose materials and appropriate working properties.
- 3. Define configuration to be modeled. Write equations defining structure.
- 4. Define load conditions.
- Determine minimum weight configuration for each point chosen for analysis.
- For each point, increase and decrease gross weight by five percent and determine optimum weights for each new point.
- Analyze the hub in a similar manner.

<u>Design Equations</u> - The design equations were derived from the data of Table IV which is considered to be typical of the five types of helicopters.

TAE	BLE IV.	TYPICAL	PARAMETEI	RS	
Category	Observ	Utility	Gunship	Transport	Crane
Nominal G.W.	3000	15,000	15,000	70,000	150,000
Rotor					
Disc Loading	4	8	9	9	9
Tip Speed	650	700	700	700	750
Solidity	.05	.1	.1	.1125	.1
Blade Loading	80	80	90	80	90
Number of Blade	es 4	4	4	5	6
Aspect Ratio	25.4	12.7	12.7	14.14	19.1

From the foregoing data, the following equations are derived for rotor blades.

$$R = .564 (GW/DL)^{.5}$$

$$QMR = .58296 (GW)^{3/2} / (DL)^{1/2}$$

$$a = 11948 (DL/GW)^{.5}$$

CB = R/AR

 $\underline{\text{Materials}}$ - Blade section materials were chosen as given in Table V.

Configuration - A typical configuration was selected
as follows:

- (a) Symmetrical Airfoil 00 Series
- (b) Mass Balanced Blade at 1/4 Chord
- (c) Inboard Extension of Mass Balance to be a Variable
- (d) Thickness Ratio = .12
- (e) Trailing Edge Cap Length = .05 CB
- (f) Spar Wall = $.08 \times .12 \text{ CB} = .0096 \text{ CB}$
- (g) Spar Width "x" is Variable

	TABLE	V. BLAD	e MATERIAL	S	
Element	Material	Lb-In. ³ Density	Design Static Strength	Design Fatigue Strength	Comments
Spar	2014 Al	.161	68,000	6000	Structural Member
Mass Balance	Lead	. 4	-	-	-
Spline Cap	Al	.1(1	-	-	-
TE Cap	Al	.101	-	,	-
Spline	Honeycomb	.0018	-	-	-
Bond	Glue	.0745 (Lb-Ft ²)	-	-	-

The unit weights of the separate elements are found to be of the following form: (Weights in lb/in. of length, where CB is blade chord and X is spar width)

Spar: $W_1 = .00097$ CB (2X + .17 CB)

Core: $W_2 = .000108 (CB(CB-X) - .0025(CB^3/(CB-X))$

Core Cap: $W_3 = .000024 \text{ CB}(.0036 \text{ CB}^2 + (\text{CB-X})^2)$

Core Glue: $W_4 = .00103 (.0036 \text{ CB}^2 + (\text{CB-X})^2)$

Trailing Edge Cap: $W_5 = .0000152 \text{ CB}^3/(\text{CB-X})$

Mass Balance: $W_6 = .0453(CB) \times - .000435 CB^2$

The area of the spar:

A = .0192 CB(X + .085 CB)

Load Conditions - The following load conditions were considered: Centrifugal loading, edgewise moment (starting torque with limit torque factor of 2), and droop bending moment (limit factor of 2.67). Because no general fatigue criteria due to flatwise bending could be developed, this condition was excluded.

Minimum Weight Configuration

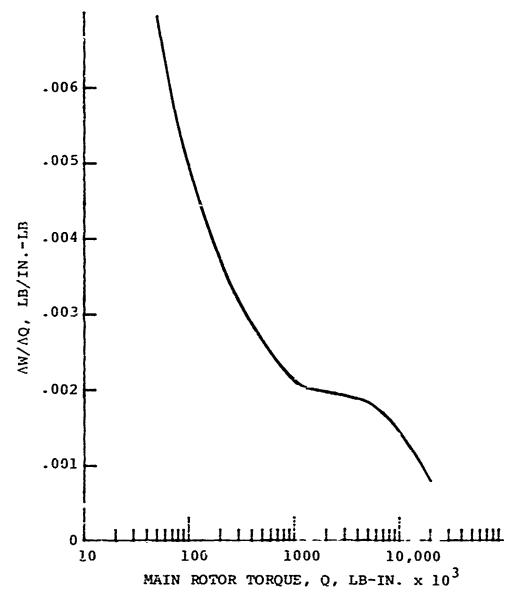

The minimum weight blades meeting the strength requirements was obtained. This data is given in Table VI.

	TABLE VI. WEIGHT	ANALYSIS - BLADES	AND HUB
G.W. (15)	Total Blade Weight (lb)	Hub Weight (1b)	Hub & Blade Weight (lb)
3,150	147.56	15.00	162.56
3,000	130.33	14.31	144.64
2,850	120.67	13.73	134.40
15,750	870.96	70.16	941.12
15,000	796.51	65.16	861.67
14,250	724.16	61.24	785.40
26,250	1930.56	138.80	2069.36
25,000	1811.43	130.62	1942.05
23,750	1690.25	122.51	1812.76
73,500	8397.16	636.22	9033.38
70,000	7945.01	600.14	8545.15
66,500	7498.49	563.84	8062.33
157,500	22948.80	1970.38	24919.20
150,000	21967.50	1849.78	23817.30
142,500	21050.20	1739.41	22789.60

Vary Gross Weight - The gross weight was varied by +5 percent, and the blade weights were obtained as above and are also given in Table VI.

Analyze Hub - A similar analysis was performed for the hub. The results are given in Table VI.

The resulting data is given on Figure 13.

Pigure 13. Main Rotor, Rate of Change of Weight Per Unit Change in Torque.

EFFECTIVENESS

It is the basic premise of the study that helicopters designed structurally for operation at off-design conditions will be heavier and costlier than those whose structure is designed at the same point at its powerplant. However, it is believed that when the entire operating spectrum of a helicopter is examined, it will be found that the extra capacity of the overdesigned helicopter will more than compensate for its additional size, weight, and cost. Thus, each of the helicopter types analyzed - utility, cargo, crane, observation, and gunship - is analyzed for its overall effectiveness in performing its intended functions at both design and off-design conditions.

Mission Parameters

As in other parts of the model, the primary emphasis of submodels used to calculate mission effectiveness is on determining the differences in effectiveness between a helicopter designed with a single, arbitrary design point and a helicopter designed with an additional, more structurally demanding design point. Hence, the mission effectiveness measures are those which concentrate on evaluating these differences, once a suitable base is established. or reference level mission effectiveness for each type of helicopter is established by its design point requirements. These requirements are the performance parameters and associated data derived from mission analyses. The mission analyses translate operational requirements (numbers of troops to be airlifted, distance from troop bases to the forward edge of the battle area (FEBA), weapons compliments, supply levels and resupply rates, etc.) into design requirements for the helicopters (payload, range, speed, OGE hover requirements, etc.). And these design requirements are specified such that under the most severe, or nearly most severe, conditions, the helicopter will be able to perform its required mission.

In the case of a transport helicopter for example, the payload may be specified as so many troops and/or equipment and cargo, the range as that necessary to move the payload from staging areas to the FEBA, the speed as that required to achieve the required reaction time or resupply rate, and so forth. To permit sizing of the powerplant, it is necessary to specify a stringent combination of hover altitude, temperature, climb rate, and power margins that the aircraft must be able to perform with its design payload. For either a single-point design helicopter, or a helicopter with two design points, this requirement would be the same.

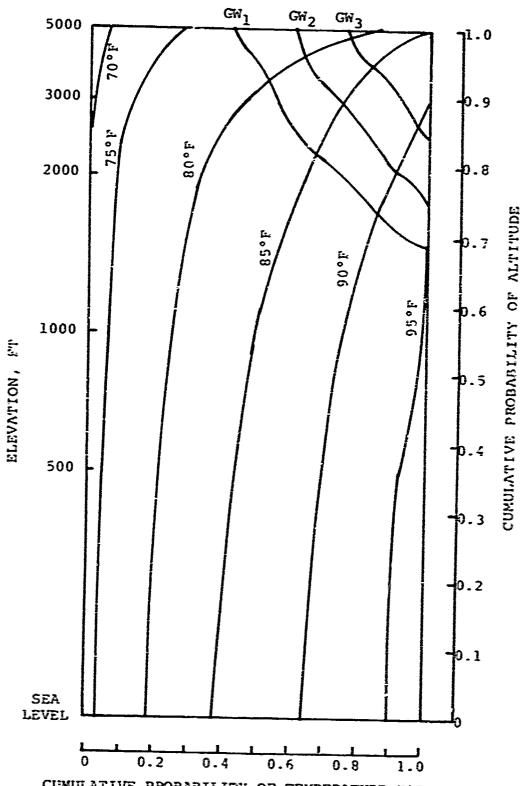
Similarly, for either a single- or two-point design helicopter, the required cruise speed would be the same. When the transport helicopter is operating at off-design conditions, its cruise speed could be modified, or its range, or any other pertinent parameter within its capabilities. In general, however, it is more appropriate to fix these values at their required levels and to examine the change in the helicopter's "essential" operational parameters. In the case of a transport helicopter this would be payload. Thus, the appropriate measure of mission effectiveness to be analyzed in this study for the transport helicopter would be its payload.

MANIE AND THE PROPERTY IN THE PARTY AND THE PARTY IN TH

For the purposes of comparing helicopters with two design points to those with a single-point design, payload is an excellent mission measure of effectiveness (MOE) for all of the helicopter types to be analyzed by the model except for the observation helicopter. Both utility and crane helicopters have payload as their primary variable requirement, with range, speed, etc., set by operational requirements that must be met (but not necessarily exceeded) under any payload conditions.

For the armed helicopter, performance at high speeds is a primary design requirement, along with weapons load. But again, payload has been selected as the variable design parameter for the mission MOE; the assumption has been made that the design value of speed (and the associated maneuver load criteria) was selected after trading off payload versus rapidly increasing component weights, particularly the rotor, at higher speeds. At these conditions, there is much more leverage in increasing payload than there is in increasing speed, because of the design limitations of the helicopter. In addition, only a small portion of the helicopters' flight time will be spent at the maximum conditions, thus arguing that increasing capability (payload) at lower speeds is the preferred way to increase overall mission effectiveness.

For the observation helicopter, the primary performance parameter is time-on-station or time on patrol which can be expressed simply as endurance at stated conditions (best speed for range, best speed for endurance, etc.). Since payload is relatively fixed (observer, tracking equipment, etc.), and other performance parameters like speed are not dominating requirements, endurance at a nominal patrol speed has been selected as the appropriate mission MOE for the observation helicopter.


Operational Parameters

Operational parameters are those parameters which define the total environment, both natural and man-made, within which the helicopter will operate. These parameters are included in the analyses defining the helicopter design requirements and can significantly influence ... intended operation of the helicopter if they are different from those designed for.

In this study, the only environmental parameter which must be included in the two-point design analysis is the altitudetemperature profile that the helicopter must operate in. However, this combined parameter is extremely important since it determines the off-design capability of the power system of a helicopter, and hence, its overall mission effectiveness parameter (payload or endurance).

A helicopter designed to hover with a specific payload at a specific altitude and temperature has a specific design horsepower powerplant requirement. At different altitudes and temperatures, its powerplant will deliver different power, and hence, its payload (or fuel load) capacity will also Thus it will achieve different levels of mission effectiveness (payload or endurance) depending on the conditions under which it must hover during the course of a The most concise and unambiguous method to analyze this problem is presented in Reference 3, and is the method used in this study. In this method, a joint temperature altitude probability distributio.. for a given geographic area is prepared first. An example of such a distribution is shown in Figure 14. The data for both altitude and temperature for this study were taken from the above reference, and an explanation of how the data are obtained and processed is given there.

The data shown in Figure 14 are used to calculate the overall probability that a given helicopter carrying a given payload and fuel load can hover in the specified environment. This is done by determining the maximum temperature that the aircraft can hover at for a given gross weight at a given altitude. This point is plotted on the graph, and after several more points are calculated, a line, such as that labeled "GW", can be drawn. The process can be repeated for any other gross weight as well (GW_2, GW_3) . This line represents the combination of altitudes and temperatures above which (higher altitudes and/or higher temperatures) the helicopter cannot hover, and hence, cannot perform its The proportion of area of the chart below this line, compared to the total area of the chart, is then numerically equal to the probability that the helicopter can

CUMULATIVE PROBABILITY OF TEMPERATURF FOR VIETNAM Figure 14. Typical Altitude - Temperature Data.

perform its mission in the given environment at the specified gross weight.

The process described above derives the probability of hover, or the probability that the helicopter can perform its mission under given conditions. To measure overall effectiveness, several different combinations of payload and environment must be considered. The method of handling several different payload levels is discussed in the next section. The method used in the model to account for operations in several different environments is discussed below.

To simplify the computation of overall hover probability in the areas of the world of prime interest to the Army, the characteristics of 19 countries contiguous to the Sino-Soviet block were combined. These are the same areas used in the analysis referenced above, and are listed in Table VII. The altitude and temperature profiles of the countries were combined to form an overall "world" altitude-temperature profile.

For combining altitude data, the probability of being at or below a given altitude is equivalent to the percentage of land at or below that given altitude if it is equally likely that one could or would be placed anywhere in the total land area. Thus,

$$f_{j \text{ cum}} = P_{j \text{ cum}} = \frac{\sum_{k}^{\Sigma} P_{jk}^{A} k}{\sum_{k}^{\Sigma} A_{k}}$$

where:

f is the frequency of occurrence or cumulative probability of being placed at the j-th altitude within the combined area of the k countries.

p is the frequency of occurrence or cumulative probability of being placed at the j-th altitude within the k-th country.

 \mathbf{A}_{k} is the area of the k-th country.

TABLE VII. AREAS USED IN HOVER PROBABILITY CALCULATIONS

- 1. West Germany
- 2. France
- 3. Italy
- 4. Spain
- 5. Turkey
- 6. Syria Lebanon
- 7. Saudi-Arabia
- 8. Iraq
- 9. Iran
- 10. Afghanistan
- 11. West Pakistan (Pakistan)
- 12. India
- 13. East Pakistan (Bangledesh)
- 14. Burma
- 15. Thailand
- 16. Laos
- 17. Cambodia
- 18. Viet Nam (North and South)
- 19. South Korea

For temperature, it is necessary to combine the temperature/ probability data in such a way as to preserve the relationship between temperature and altitude. Hence, temperature should be derived on a weighted basis for each altitude investigated. Treating the probability of a temperature occurring as its frequency of occurrence:

$$f_{ij \text{ cum}} = P_{ij \text{ cum}} = \frac{\sum_{k=1}^{\Sigma} P_{ijk}^{A}_{jk}}{\sum_{k=1}^{\Sigma} A_{jk}}$$

where:

 f_{ij} is the cumulative frequency of occurrence of temperature T_i at altitude h_j within the combined areas of the k countries.

 P_{ijk} is the probability of T_i occurring at h_j in each of the k countries.

 A_{jk} is the area of each country at the altitude h_{j} .

For altitude, the simple calculation can be performed by multiplying the percentage of total area represented by a country and the cumulative percentage of area in that country at or below a given altitude to obtain the fraction of the total area of all of the countries at or below a given altitude represented by that country. For a given altitude, when this is done for each country and the results added, the total represents the cumulative percentage of the total area at or below the given altitude. Thus:

$$P_{cum j} = \sum_{k} P_{cum jk} \times (A_k/A)$$

For combining temperature data, the process is more complicated. Here, it is necessary to weight a given temperature value by both its frequency of occurrence in a given country at a given altitude and by the percentage of area of a given country at that altitude. Cumulative frequencies of temperature for a given temperature level, multiplied by the fraction (not cumulative) of area represented at a given altitude yields the cumulative frequency of occurrence of the temperature at the altitude of interest. Thus:

$$P_{i(cum)j} = \sum_{k} P_{i(cum)jk} \times (A_{jk}/A_{j})$$

Since the altitude/fraction data is given on a cumulative basis for each country, a method to derive a frequency distribution histogram must be devised so that area fractions can be assigned to each altitude for each country. If a very large number of altitudes were being investigated, the histogram would closely approach the actual frequency distribution. However, only a limited number of altitudes were calculated in the current calculation. Applying the historram approach to the entire altitude distribution curve might result in a rather gross histogram where much area would be represented by a single altitude. However, since the accuracy of the source cumulative frequency distributions for temperature (and altitude to some extent) is somewhat questionable (as indicated by the methods used to derive these data in Reference 4), extreme care with development of a histogram is probably not warranted considering the overall temperature accuracy.

To derive a consistent weighting function for the temperature data at each altitude, a sampling approach was used. Here, a narrow band of altitudes was selected around each altitude for which weighting data were required. This number was used as the weighting factor. The size of this number depends on

two things: (a) the size of the country; and (b) the slope of the altitude distribution curve in the band selected. Obviously, the size of the country should have an effect on the weighting of the temperature. The local slope indicates how rapidly area is being added to the cumulative distribution and thus reflects the percentage of area considered as representative at a given altitude.

After performing the necessary computations, the cumulative joint probability distribution for altitude and temperature was obtained. These data are shown in Figure 15 and were prepared in tabular form for use in the computer model.

Utilization Parameters

The previous sections discussed the choice of pavload or endurance as mission effectiveness parameters, and how environmental conditions of hover altitude and temperature affect the helicopter's ability to perform its mission. The latter factor is dependent upon the amount of pavload or endurance required, which in turn, depends on how the helicopter is utilized. Thus, a third factor to be considered in determining the effectiveness of a helicopter is the relative frequency with which it will operate with a given payload or endurance (fuel load) over its operational lifetime.

An example of utilization data is shown in Figure 16, which was prepared using data from Reference 5. These data illustrate typical utilization patterns for utility transport observation, crane, and gunship helicopters. Unfortunately, many assumptions would have to be made to derive a relationship between the gross weight distributions shown in Figure 16 and the corresponding payload/fuel load distribution. Since this analysis was beyond the scope of the current study, this effort was not conducted. However, it was recognized that this could be an important factor in devermining overall effectiveness and in optimizing selection of a second design point. Hence, provision was made in the effectiveness model, and the computer program, for including this factor in the effectiveness calculation.

Effectiveness Fruations

The basic equation used to calculate the effectiveness of a helicopter is:

MEI = (PL)(PHOV)(PUF)

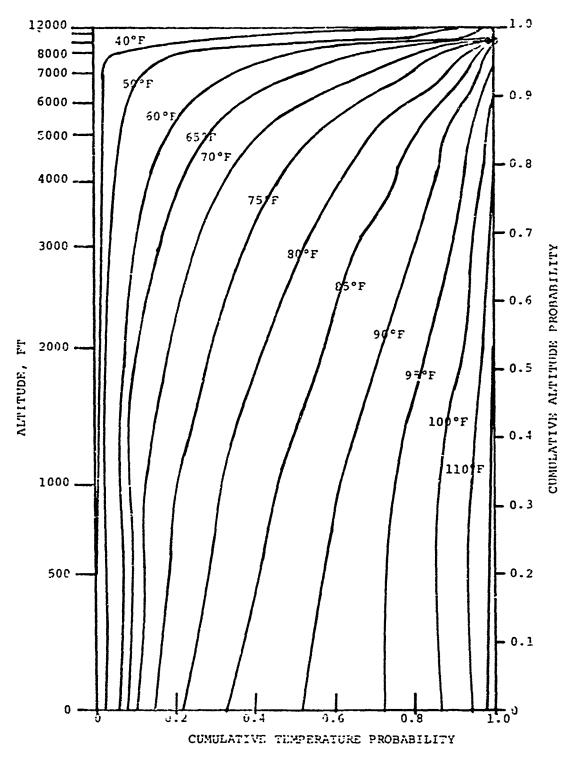


Figure 15. Combined Altitude - Temperature Data.

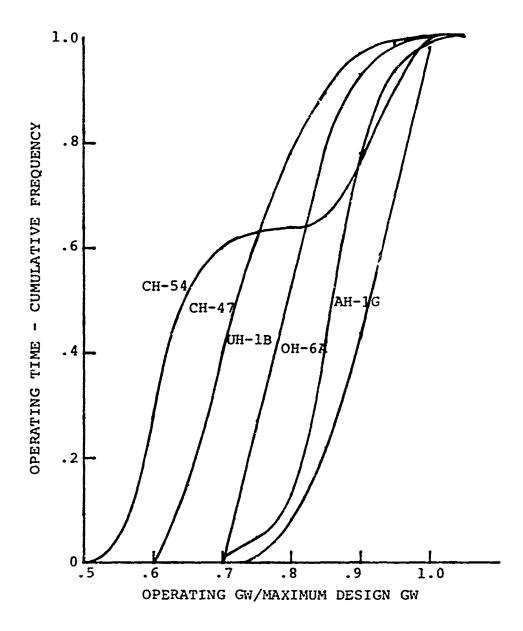


Figure 16. Sample Utilization Data.

The use of this effectiveness index is illustrated below.

It is desired to determine the optimum two-point design of a transport helicopter with a given design payload requirement at a hover condition of 4000 ft, 95°F, 500 ft/min rate of climb. The ship must have a range of 300 NM, a cruise speed of 160 knots, etc. Using the techniques described in previous sections, two helicopters are "designed": a helicopter with a single-point design (4000 ft/95°F) and a helicopter with two design points (4000 ft/95°F, 2000 ft/75°F). These helicopters have different gross weights and empty weights, but a common design payload.

To compare their respective effectiveness levels, representative payloads spanning their range of capabilities will be used, from 0 payload up to a payload that overloads the helicopter, say 10 percent over design payload. Using these payloads, a utilization frequency is obtained for each level. These are the same for either helicopter, since the payload increments match. However, the gross weight level associated with each payload level is different, depending on which helicopter is examined. This results in a different probability of hover, which in turn, affects the effectiveness index. After the effectiveness index is calculated for each payload increment, the sum yields the overall effectiveness index for each helicopter.

A sample calculation illustrating this technique is shown in Table VIII. Included in the table is a cost factor covering life cycle costs for each helicopter. A detailed explanation of how these costs are calculated is given in the next section. If costs are included, a cost effectiveness index can be calculated rather than just a simple effectiveness index. Thus

OCE =
$$z = \frac{k}{z} \frac{(PL) (PHOV) (PUF)}{CPFH}$$

where:

CPFH is the total cost per flight hour for the helicopter.

After examining the case for the two-point design helicopter described above, another calculation can be performed for another one (say 4000 ft/95°F, 3000 ft/75°F). Several of these calculations then lead to a series of optimization curves, from which the optimum second design point for the helicopter with the given mission requirements can be determined.

•							_				_		_			_		
		Cost	(\$/hr)		311		_		<i>-</i>		., .	.,	~	\sim	_	345		
		Point ter Index of	Eff		25.0	•	ູນ	00		• •	, c	7 (α Ο	36.	12.	506.0	3278	98.6
	ATION	Two Design Po Helicopter Inver o	Prob	~	۲,	٦,	, ,	-	O	, α	9 0	1 2	\	_	10	.920	MEI =	OCE =
	S CALCULATION	7	(1b)	7,09	17,580	8,07	8,60	70'6	9,56	0.05	, 55 to 1	, -	` ·	7 44	2,20	2,755		
	EFFECTIVENESS	r Cost	(\$/hr)	85	286	83	91	94	86	22	90	· C	2 1	n (0	340 2		
	COST EFFE	dle Design Point Helicopter Index Hover of C	DEE	Ö	25.0	ċ.	₹.	99.	23.	ς.	70.	74.		, ,	77	490.0	3244	10.33
	SAMPLE C	Single Des Hel: ht Hover	Prob	7	, → , ,	. (2) i	ς 0	œ	. 975	\sim	S) L	2	.891	MEI =	OCE =
	III.	Weigl		14,840	υ, ω,	, u , u	0 ' 0 '	9/19	7,22	7,70	8,22	8,78	9.25			20,600		
and the second desiration of the second seco	TABLE V	Utilization	t test delicy	0.	ດ ແ ວ c) u	0.0	٠ ٢ ٢	07.	. o.			٠. در		.10		
		Payload (1b)		0 0	1000	1500	2000	0000	2000	0000	3200	4000	4500	5000	(Design)	500	-	

COST MODEL

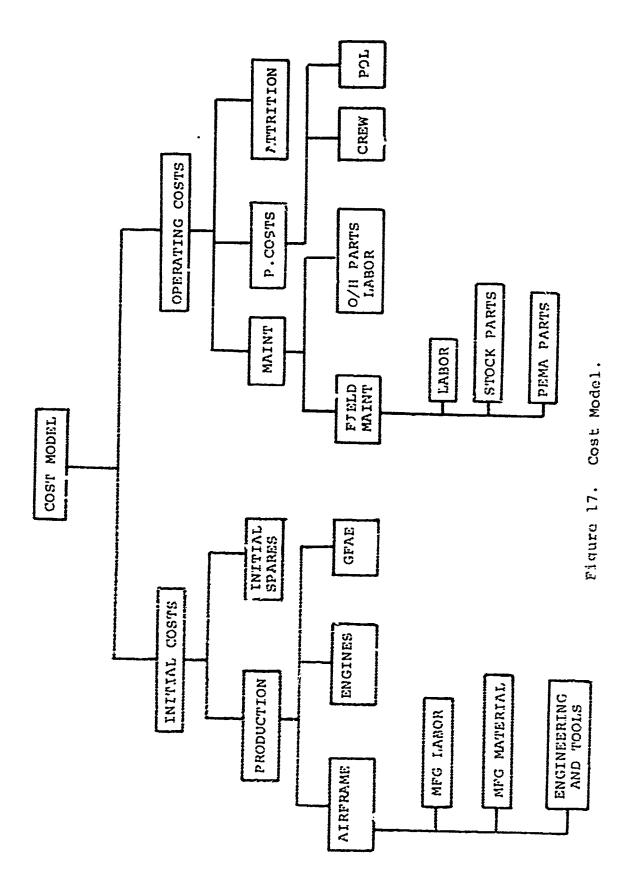
The cost model is a statistical approach to aircraft cost estimating. The cost estimating relationships utilize empirically derived cost functions. The costs have been functionally related to basic aircraft parameters such as empty weight of airframe and installed power of engine. The model is sufficiently detailed to distinguish cost differentials between two-point design and single-point design helicopters. This approach allows cost estimates to be made based on primary aircraft parameters before a detailed design is actually completed. The cost model is broadly divided into initial and operating costs as illustrated in Figure 17.

Initial Costs

Initial Production costs are based on a rodel evolved by E. H. Yates (References 6 and 7). The production costs are subdivided into airframe, engines, and covernment-furnished aircraft equipment (GFAE).

Airframe direct labor costs were derived from direct labor man-hour data contained in Aeronautical Manufacturers Planning Reports (AMPR). The costs were estimated on a per-pound basis at production number 1000. The average labor learning curve as a function of production number, NP, is:

$$C = 43.12 (NP)^{...39}$$


The airframe labor cost, in dollars, is given in terms of AMPR weight*, WA, in pounds;

Thus, when combined with the learning curve, the airframe labor cost is

$$CI_i = 760.2 \text{ Wi.}^{85} (NP)^{-.39}$$

where CL is in dollars and WA is expressed in pounds.

^{*} AMPR weight is Aeronautical Manufacturers' Planning Report weight which is empty weight of aircraft less (1) wheels and brakes, (2) engines, (3) starter, (4) cooling fluids, (5) instruments, etc.

The state of the s

THE STREET STREE

The cost for airframe materials for subsonic aircraft was found to be a function of airspeed as well as weight and number produced. The following relationship is for fixedwing aircraft, but since its effect is small and a better relationship was not found, airframe material cost is defined as:

$$CM = .007(WA)/(NP)^{.12}(TAS)^{1.24}$$

where TAS is the aircraft speed in knots.

Cumulative average engineering and tooling costs per airframe are related to the total number of units planned for production. Based on post World War II aircraft the relationship for engineering and tooling costs is:

$$CET = WA(220/NP + 7.5/NP^{.15})$$

where NP is the number of units planted for production.

There are additional costs which must be added to the above costs. These are general and administrative expense (GA), engineering change proposals (ECP), and profit (P). The following relations apply:

$$GA = 0.1(CL + CM)$$
 $ECP = 0.1(CL + CM + CET + GA)$
 $P = 0.1(CL + CM + CET + GA + ECP)$

In the equations above, the AMPR weight, WA, is related to the empty weight, WEM, by

$$WA = .749 WEM + .126$$

The correlation coefficient of this equation is .997 with a standard error of .356 kilo-pounds (Reference 7).

Data for 17 turboshaft engines were analyzed. The best least-squares fit was made to obtain the following relationships:

CE = PRA (58 - .006 PRA/NEN) PRA
$$\leq$$
 3500 HP
CE = NEN (129,500 \div 37 (PRA/NEN - 3500) PRA > 3500 HP

1976年16月1日,1976年16月1日,1976年16月1日,1976年16月1日,1976年16月1日,1976年16月1日,1976年16月1日,1976年16月1日,1976年16月1日,1976年16月1日,

where PRA is in horsepower per engine and CE is in dollars.

The GFAE category usually includes the cost of ordnance and armament and electronics that are not an integral part of the airframe and engines. This cost item is highly dependent on mission objectives and type of helicopter, and therefore, is quite sensitive to the function of the aircraft. For this cost model, insufficient data exists to derive a cost estimating relationship for the various types of helicopters, i.e., utility, observation, gunship, etc. An estimation equation with limited data was found to be:

$$CG = -3760 + 4.79 WA$$

The initial costs are plotted in Figure 18 for production number of 100 of a 120-knot helicopter.

The cost of production (CP) is then defined by:

$$CP = 1.321 \text{ CI, } + 1.331 \text{ CM} + 1.21 \text{ CET} + \text{ CE} + \text{ CG}$$

To simplify the model, the constants are included in the individual terms to yield:

CL =
$$1011 (WA)^{.85}/(NP)^{.39}$$

CM = $.00931 (WA) (TAS)^{1.24}/(NP)^{.12}$
CET = $1.21 (WA) (220/(NP)^{+}.75/(NP)^{.15})$

and

$$CP = CL + CM + CET + CE + CG$$

The costs of attrition (CA) and initial spares (CI) are defined as:

$$CA = (YAR)(CP)(SL)/(NP)$$

and

$$CI = .1(CP)$$

The production, spares, and attrition costs are summed to form:

$$CPIA = CP + CI + CA$$

Operating Costs

The operating cost portion of the model is broken down into three main categories, as is shown in Figure 17: maintenance, direct operating costs, and attrition.

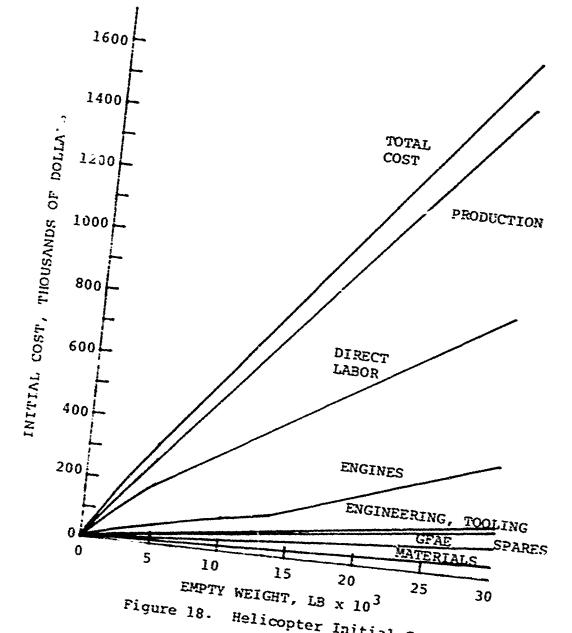


Figure 18. Helicopter Initial Costs.

Maintenance costs consist of overhaul parts and labor and field maintenance. The field maintenance category includes labor, stock fund parts, and PEMA (Procurement of Equipment and Missiles, Army) parts. The direct operating costs are composed of crew costs and petroleum, oil and lubrication (POL).

A regression analysis was performed on the operating costs (Reference 9) of 17 Army helicopters to determine cost estimating relationships. The correlations are based on the empty weight, WE, of the helicopter. These operating cost estimating relationships are given below:

TO THE PART OF THE

The fuel costs can be described by the above statistical relationship but since the actual fuel load is calculated, the fuel cost can be calculated using:

$$CFUL = .25 WFL/6.5$$

The expression for the maintenance operating (CFM) costs is for average operating conditions. If the helicopter is operated at an overloaded or underloaded condition, the maintenance costs will differ from these. This comes about due to a change in the average failure rate of components of the helicopter system. Maintenance costs are inversely proportional to the mean time between failures. To determine the mean time between failure, the probability of failure as a function of loading was related to the probability of failure as a function of time.

The probability of failure, P_n(L), as a function of load, L, is typically of the form (References 10 and 11):

$$P_{F}(L) = 1 - \exp \left(-\left(\frac{L + a}{3}\right)^{\frac{1}{3}}\right)$$

The probability of failure as a function of time shown is of the form:

$$P_{F}(t,T) = 1 - \exp(-.693 \frac{t}{T})$$

where T is the mean time between failure.

When the elapsed time t = T, the probability of failure is .5; i.e., at the mean time between failure the probability of failure is 50%. This corresponds to an average loading of the helicopter (L = 1). If the loading is increased to L = 1.4 for example, the probability of failure increases to .9. A failure probability of .9 at time T1 determines a new failure curve and thus defines a new MTBF which is T2. In other words

$$P_F(L) = P_F(T1, T2)$$

resulting in

$$\frac{T2}{T1} = \frac{.693}{(\frac{L + \alpha}{3})\gamma}$$

Thus, the new MTBF, T2, is determined from the load factor L and T1.

The mean-time-between-maintenance action, Tl, was determined from data in Reference 12. Failure rates per flight hour were determined for 35 systems included in helicopters. From this data, the average flight hours per failure was determined and was correlated to the empty weight, WE, of the helicopter. The relationship is

$$T = .6778 + \frac{5544}{WE}$$

where T is the average mean time between failures in hours and WE is the empty weight in pounds.

The loaded maintenance costs are then obtained by multiplying the above equation for CFM by the inverse ratio of the mean time between failures.

The above relationships result in the relationship

$$T/TN = .693/((OLF + .01/7)/1.15)^3$$

where T, TN are the actual and the normal mean time between failures. OLF is the overload factor and is the ratio of the gross weight to the design gross weight. In practice, it is found that in effect that OLF is never less than .5, corresponding to T/TN of 7.6. This implies that maintenance is still performed even if the helicopter is not flown. When OLF > 1.5, catastrophic failure occurs.

The costs are all reduced to cost per flight hour using the following equation:

CPFH = CPIA/(12(MFH)SL) + CD + CMT + 60 CFUL/TTIM

where TTIM is mission time in minutes and CPFH is in \$/hr.

是这种是国际政治的是是人,他们是是一个人,他们是这个人,他们是这个人,他们是这个人,他们是这一个人,他们是这一个人,他们是这个人,他们是这个人,他们是这一个人,他们是这一个人,他们是这一个人,他们是这一个人,他们是这一个人,他们是这一个人,他们是这一个人,他们是这一个人,他们是这一个人,他们是这一个人,他们是这一个人,他们是这一个人,他们是这一个人,他们是这一个人,

COMPUTATIONAL METHOD - USER'S GUIDE TO ZODIAC II

The elements of the analytical model described above must, of necessity, originate in several different sections of an Engineering Department. Each of these model elements is subject to minor or major changes due to variations in mission and helicopter type under study, technology level, design philosophy, data available, or budgetary considerations. The overall logic is similarly subject to changes for these reasons and, in addition, because of the particular parameters to be varied and because of variations in the purpose of the study.

The conventional approach to this modeling study would range from a simple computer program which would have to be reprogrammed for each of the many modifications in the model to a complex program which includes prior provisions for all the possible modes of operation. The objections to these methods include the high cost of many changes (for the simple program) or high initial costs (for the complex program), the difficulty of varying modes of operation; changing criteria; and expanding capabilities. The most serious disadvantage, however, is the fact that the engineer is left out of the decision loop. Typically, the engineer would describe his requirements to a programmer (or make major program changes himself), or he would select options from a coded table. In this environment of continual change, the risk of getting meaningless data is significant.

The approach selected here for implementation is an outgrowth of a computer program originally devised at Kaman primarily for weights analyses, where typically the analytical models are continuously changing. This program, called ZODIAC, is described in Reference 13.

The primary motivation in the development of this program was that it should be a tool which is completely meaningful to, usable, and changeable by an engineer with no or little programming experience. It is believed that this objective has been achieved in ZODIAC II.

PROGRAM FEATURES

Prior to describing the program usage in detail, some of the features and the organization will be discussed. Examples of all those features can be found in the listings of the model formulations in Appendix II.

Modular Organization

The analytical model is divided into separate computational units called "modules". Each module generally is used to carry out one logically self-contained computation. were discussed in the previous section on the Analytical Typically, individual modules will represent computations like statistical weight, mission fuel requirements, initial costs, mission effectiveness, etc. Many of the quantities involved in the module will not be used any place else in the model. Only these variables which are shared in common with other modules must be specified. The module will consist almost entirely of the equations which define the computation. Each module must have a name so that it may be referred to by the "control module". Modules may be easily changed by adding, removing, or changing equations or the entire module.

Control Module

The overall logic of the analytical model is carried out by the "control module". This portion of the program consists mainly of instructions specifying which module to run next. The same module may be run more than one time by the control module.

Logical Operations

The number of types of logical operations has been limited to true operational decision making functions. It is preferred that the engineer change his model to reflect changed ground rules rather than include several possibilities and choose between them with pseudo-logical input codes. In this manner the engineer is always fully cognizant of his model and it is always under his full control. This approach is possible because of the ease and safety with which such changes can be made. The two major logical operations included are: (1) automatic iteration within a module or around several modules (as is commonly used in weight estimation or in determining the power for maximum range); and (2) a conditional evaluation of a variable (as might be used to prevent a power required computation from exceeding some torque limitation).

Equation Form

The actual equations make up almost all of the model. The equations are written in algebraic form (consistent with FORTRAN) and allow all arithmetic operations including exponentiation. See listings in Appendix II for many examples.

Table Look Up

Since tabular data will normally make up a substantial portion of the input data to any modeling program, ZODIAC II has an automatic table look up feature. Linear interpolation of tables with up to three independent variables is automatically performed.

Input Data

Input of data is extremely simple. The program does not presuppose any point of input or any particular data. Data is always self-identified and may be freely input with the modules. Additional input may be called for during the running by the simple statement, READ. At this point, any desired data may be input or changed.

Output of Data

Output is also extremely simple. All that is required is the simple statement PRINT, followed by a list of the variables. On output each quantity is automatically identified.

The input and output procedures are especially convenient when compared to more formal languages, like FORTRAN, where typically many programming hours are spent deciding on all the input options and output formats.

Checks

Because of the free form of computation allowed, it is necessary for the program to include a number of built-in automatic checks. If a variable used in an equation has not been previously input or calculated, a warning message is printed. If it is necessary to extrapolate during a table look up, a warning message is also printed. If the equations in a module cannot be evaluated in the order presented, they are automatically rearranged and an error is indicated if appropriate.

USERS RULES

The rules for using ZODIAC II are quite simple, and all one needs to know is specified in detail in the following pages. In some cases comments meant for FORTRAN programmers are included in parenthesis. These comments should be ignored by engineers not familiar with FORTRAN. There are a few definitions required prior to discussion of the allowable statements:

Statement - meaningful (to the computer) contents of a punched card

Variable - an algebraic quantity whose name has from 1-4 letters or numbers, the first of which must be a letter. Examples: A, QMR, Bl23, A7L6. If the variable is common (see below) its name may be preceded by a \$.

Constant - a number. It may be positive or negative, it may or may not have a decimal, and it may contain an exponential. Examples: 12, 15.7, 1.73E-5(= 1.73 x 10⁻⁵), 6.54E16, 2E10.

The following codes are used in the following sections.

v = variable

c = constant

vc = variable or constant

n = name

Capital letters indicate precise words required as part of the statement. Blanks are ignored and may be used anyplace on cards for clarity (with the single exception of input table data).

All statements may be followed by comments on the same card provided a semicolon (11-8-6 punch) is used to separate the two.

There are three groups of statements: Control Module Statements, Module Statements, and Data Statements. These will be discussed separately.

Control Module Statements

The control module is used to specify the order of computation and includes the major logic of the simulation. Unless otherwise instructed the statements are carried out in the order shown. The allowable statements are listed and then described immediately following.

RIN MOD n

v = simple expression

POINT n

ITERATE ON v, ATOL = vc, PTOL = vc, TIMES = c, FROM n

COMMON v, v, v...

(LT)

IF vc IS EQ vc, GO TO n
(GT)

GC TO n

READ

PRINT v, v, v...

RUN MOD n (1-20 characters) - This statement causes the named module to be run. The name specified must also appear on a Module Name statement in the module which is to be run. (This is similar to a call statement in FORTRAN, but no argument list is used.)

<u>v = simple expression</u> - This statement is used to perform simple arithmetic in the control module. A simple expression is one which involves addition or subtraction of two terms, or a single term. The two forms which this type statement can have are shown below.

v = vc + vcv = vc Point = n - This statement specifies a point in the control module which may be referenced by an ITERATE, IF or GO TO statement. The point name specified must follow the same rules as a variable name and it may not appear in the control module as a variable name. Its use will be clear when the mentioned statements are discussed.

ITERATE ON v, ATOL = vc, PTOL = vc, TIMES = c, FROM n - This causes the program to iterate on the statements which are located between the POINT specified by FROM n and the iterate statement. Iteration will continue until two successive values of the variable specified by ON v are within the limits set by ATOL or PTOL or until the number of iterations exceeds the amount specified by TIMES. The details for each specification are as follows.

ON v - The variable which is specified is the variable on which iteration will occur. This specification is optional, if it is omitted the computations will be repeated the number of times specified by TIMES.

ATOL = vc, PTOL = vc - Both ATOL and PTOL are used as a test for convergence of the variable specified in the ON specification. ATOL is an absolute tolerance and PTOL is a percent tolerance. Both ATOL and PTOL are optional, but both are omitted, PTOL is set equal to 5 percent. For convergence, one or both of the following must be true:

$$|v_i - v_{i-1}| < ATOL$$

and/or

100
$$\frac{|v_i - v_{i-1}|}{|v_i|}$$
 < PTOL

Note that PTOL is put in in percent not decimal.

TIMES = c - This specification is used to specify the maximum number of iterations to be allowed. If convergence is not obtained before the number specified by TIMES is exceeded, iteration stops and an error message is printed out.

FROM = n - This specifies from which POINT in the program iteration is to occur. The point name specified must be on a POINT statement which must precede the ITERATE statement.

COMMON v, v, v - A COMMON statement is used to specify variables which are used in other modules. The order in which variables appear on the card is not important, but the variable name must be the same in both modules. A \$ preceding a variable name has the same effect as placing the variable name in a COMMON statement. A common statement must appear in a module before any of the variables on it are used. This statement is normally placed at the beginning of the module. Each card may contain ur to 40 variables. As many COMMON ca.ds as necessary may be used. (As distinguished from FORTRAN the order of the names is immaterial, only the names themselves are important.)

(LT)

IF vc IS EQ vc, GO TO n - In this statement a test is
 (GT)

made to determine if the left variable or constant is less than (I.T), equal to (EQ), or greater than (GT) the right variable or constant. If the statement is found to be true, then the module branches to POINT n. If the statement is not true, the next statement following the IF statement is executed.

GO TO n - This statement causes a branch to POINT n. The next computation to be performed immediately follows the POINT n. Note that a GO TO should be followed by a POINT statement or be at the end of the module since there is no way of getting to a statement which follows a GO TO unless it is a POINT statement.

READ - This statement will cause data to be read into the next module before it is run. The rules for the data statements are specified elsewhere. (No specification is made as to what or how much data is to be read, this is defined on the input cards.)

PRINT v, v, v - This statement causes the values of the variables to be printed and identified in a standard format, five to the line.

Module Statements

The module contains primarily computation and a minimum of logical instructions. The allowable statements and their descriptions are as follows:

MODULE NAME = n

v = general expression

v = TABLE table name (vc, vc, vc)

ITERATE ON v, ATOL = vc, PTOL = vc, TIMES = c

INITIALIZE v = c, v = c

COMMON v, v, v...

(LT)

IF VC IS EQ vc, vc = general expression
 (GT)

PRINT v, v, v

NO ORDER

MODULE NAME = n - This statement gives a name to the module. Every modul, must contain this statement. The name can consist of from 1 to 20 alphanumeric characters. This cald is usually the first one in a module but it can be placed anywhere.

THE PARTY CONTRACTOR OF THE PARTY OF THE PAR

v = general expression - This is the basic statement and as such, there is a whole section devoted to it. But a few rules are: the minimum requirements are a variable, an equals sign and either a variable or a constant. Usually, the general expression is any algebraic expression which conforms to standard mathematical usage and consists of addition, subtraction, multiplication, division, and exponentiation. See the section titled Syntax Rules for Expressions.

y = TABLE table name (vc, vc, vc) - This statement is used for table look up. Up to three arguments are allowed but only one is necessary. The number of arguments must coincide with the size of the table. The value returned is a result of a linear interpolation. When an argument exceeds the limits of a table, a warning message is printed. The rules for a table name are the same as for a variable. All tables are essentially in COMMON and thus can be shared by all modules.

ITERATE ON v, ATOL = vc, PTOL = vc, TIMES = c - This statement is the same as used in the Control Module with the single and very important exception of the absence of the FROM specification. In a module the whole module is iterated upon except the INITIALIZE statement. The location of this statement in the module is not important.

INITIALIZE v = c, v = c...up to 17 variables per card - The initialize statement may be used in a module which contains an ITERATE statement. Before the first iteration the variables specified are initialized to the specified values.

COMMON v, v, v... - This statement is used to designate variables which are used in or come from other modules. The rules are the same as for the Control Module statement. Note that only variables which are used in the module need to be listed and that the order is not significant.

(LT)

is similar to the IF statement of the Control Module except that a general algebraic statement is evaluated if the logical statement is true. This statement is often used for limiting conditions: for example, a stall limit might be imposed by the following statements

VMAX = TABLE VEL (POW, FOW)

IF VMAX IS GT VSTL, VMAX = VSTL

which says that VMAX will not be greater than VSTL.

PRINT v, v, v... - up to 40 variables per card - The statement is the same as above except that regardless of where it is located in the module the data is not printed until the module has been run.

NO ORDER - Normally a module is run with the statements in the same order as they were read, and if the sequence must be changed an error message is produced. This statement allows the sequence to be changed without producing an error message.

Data Statements

Data can be entered following any of the modules (including the Control Module) when the model is first loaded into the computer. This is done with no special instruction. For data to be read by a module during the running of the program, the RUN MOD n statement is preceded by a READ statement. At no time does the user have to specify in the model how much or what data is to be read.

For input of variables the following form is used on the cards:

V = C, V = C, V = C...

There may be up to twenty variables per card. The commas are required to separate the statements. The following example is an illustration of two cards of data.

ALT = 2000, OAT = 35., GW = 10,000DL = 8.5, VRC = 500. LANGE OF THE COMPANY OF THE COMPANY

Only variables which are referred to in a module (or in its COMMON statement) may be entered.

Input of tables requires somewhat more care. The first card must be of the form:

TABLE NAME = n, SIZE = (c, c, c)

This statement is used to assign a name to a table and to define its size. This statement must be followed by the data for the table. The name must conform to the same rules as a variable name. The size need only contain the number of arguments needed to specify the array size; for instance, if a table has 10 "x" values and 3 "y" values, the size would be (10,3). The order in which the data is input is given below. The data cards are of the form:

c c c c

Each card contains up to 8 constants. This form is used only for table data input. This card is the only one with a specific format. Each constant must be contained in a field of 10 columns, 1-10, 11-20, etc. Each constant must also contain a decimal point. Otherwise the rules are the same as for a normal constant. The order in which the data is input will now be described. x, y and z correspond to the first, second and third arguments in a v = TABLE n(x,y,z)

statement. Consider a TABLE NAME statement with SIZE = (i, j, k). The first thing to be input would be i values of x followed by j values of y and then k values of z. Then the table is read in with the first index varying first, then the second, then the third. That is, the elements of a (3,4) table would be read in this order: (1,1), (2,1), (3,1), (1,2), (2,2),... A new card must be started whenever one of the indices returns to 1. The values of x, y, z must be in ascending order. They may be positive or negative and the increments need not be constant.

The following is an example of a table which has three ${\bf x}$ values and four ${\bf y}$ values.

TO THE PARTY OF TH

The data cards would be as follows:

Card #	Contents					Comments	
1	TABLE	NAME =	EXMP,	SIZE =	(3, 4)		
2	0	10.0	20.0				x values
3	G	1.0	2.5	5.9			y values
4	2.0	3.0	5.5				
5	1.9	2.85	5.4				
6	2.1	3.2	5.5				Table
7	2.6	3.4	5.8				

SYNTAX RULES FOR EXPRESSIONS

The rules for general expressions are essentially the same as for any algebraic expression (and are compatible with FORTRAN). Two things to keep in mind are that for multiplication, the multiplication operator must separate the two variables, and since equations are written on one line extra parentheses are sometimes required when dividing.

There are five operations which are allowed, the operation and their symbols are as follows:

	Operation	Symbols	
1.	Addition		
2.	Subtraction	-	
3.	Multiplication	•	
4.	Division	/	
5.	Expenentiation	**	

There are two other symbols which are allowed in a ceneral expression. They are left and right parentheses which are used for associations and must be used in pairs.

The following are the rules for general expressions (these are a formalization of ordinary algebraic form):

- All variables and constants, except the first must be preceded by an operator or a left parenthesis. The first may be preceded by a left parenthesis or a sign.
- All variables and constants, except the last, must be followed by an operator or right parenthesis. The last may be followed by a right parenthesis.
- 3. A left parenthesis must be preceded by a left parenthesis or an operator unless it is the first symbol in the expression, in which case it may be preceded by a sign.
- A left parenthesis must be followed by a left parenthesis, a variable, a constant, or a sign.

- 5. A right parenthesis must be preceded by a right parenthesis, a variable, or a constant.
- 6. A right parenthesis must, unless it is the last symbol on the card, be followed by a right parenthesis or an operator.
- 7. An operator must be preceded by a variable or a right parenthesis.
- 8. An operator must be followed by a left parenthesis or a variable.

The following are examples of general expressions which conform to the rules.

The order in which operations are performed are:

- 1. Exponentiation
- Multiplication and Division
- 3. Addition and Subtraction

The order of evaluation is from left to right, with parenthetical expressions being evaluated first and then the expression as a whole. Note that the division operator applies only to the variable or parenthetical expression immediately following it, i.e.,

$$A/B*C = \frac{AC}{B}$$

PROGRAM OPERATION

The first deck to be loaded must be the control module. This is followed by any appropriate data. Then the individual modules are loaded, each optionally followed by a block of data. These modules may be loaded in any order. The order in which they are used is solely determined by the statements of the control module. After the last module is input, appropriate blocks of data follow in the order in which they will be called by READ statements during execution of the program.

Each of the above units must be separated by an "end-of-file" card which contains an /* in columns 1 and 2. Thus the input deck will appear as follows:

```
(Control Module)
/*
  (Data)
/*
  (Module)
/*
  (Data)
/*
  (Module)
/*
  :
  (Last Module)
/*
  (Data)
```

Data input is assumed after each module. Even if no data are entered then the two /* cards must still appear:

```
:
(Module)
/*
/*
(Module)
:
```

After the last module is entered, two /* cards instruct the computer to start running the model. If the last module is not followed by input data, then:

: (Mc dule) /* /* /*

PROGRAM LIMITATIONS

The following limits exist in the present version of ZODIAC II.

Common variables - 200 maximum

Noncommon variables - 200 maximum in a module

Constants - 200 maximum in a module

Equations - 100 maximum in a module

Tables - 20 maximum

Modules - 30 maximum

Iterate statements - 4 maximum in a module

Constants may not contain more than fifteen characters.

ERROR CODES

During operation of the program, certain violations of rules or apparent violations of logic may occur. When this happens a coded error message is printed. The codes are given in Table IX.

TABLE IX. ERROR CODES Code Meaning 1 Number of common variables exceeds 200 2 Number of constants exceeds 200 in module 3 Number of equations exceeds 100 in module Missing parenthesis 5 "=" missing or incorrectly placed 6 Name length on data card too long Constant exceeds 15 characters Number of noncommon variables exceeds 200 in module 8 9 Undefined variable in module 10 Equations reordered - possible error 11 Name of argument in table lookup too long 12 More than 3 arguments in a table lookup 13 Invalid character 14 Incorrect symbol More than one "=" on card 15 16 Undefined "FROM" on iterate card 17 18 No name on a MODULE NAME card Incorrect argument on IF card 19 Incorrect operation on IF card 20

TABLE IX - Continued					
Code	Meaning				
21	Incorrect format on IF card				
22	More than 4 ITERATE statements in a module				
23	More than 30 modules				
24	Illegal command				
25	Number cf iteration exceeds allowed number				
26	Illegal statement in control module				
27	More than 20 tables				
28	Number of arguments in a table lookup is inconsistent				
29	Table lookup requires extrapolation				
30	Error on table input				
31	More than 18 variables initialized in module				
32	Invalid operator on a control module card				
33	Name too long				
34	Undefined variable in control module				

In general, the program will continue to run even though errors are found. Invalid variables are ignored and other assumptions are made which will allow the completion of the computation. Care must be exercised since some computations with errors will be valid, some will be completely invalid, and some will have limited meaning. This approach, however, is expected to minimize the time required to verify a program.

The only error which will terminate a run is no. 34.

SUGGESTIONS FOR THE NEW USER

Gaining Experience

A good way for the new user of ZODIAC II to gain familiarity with the usage of the program is to first modify existing models, rather than attempting to develop a complete new analytical model.

Changes within individual modules corresponding to mission definition changes, effectiveness criteria, statistical weight analysis, etc., are especially straightforward. It is recommended that each equation be identified by making use of the comment capability on each card.

A next step in the familiarization process would be to add or delete modules and make the appropriate changes in the control module statements.

Making changes in the logic within the modules and especially in the control module will complete the process of familiarization. While these modifications are being performed, computer runs using various combinations of data variations should be conducted.

User Techniques

One of the major objectives of ZODIAC II was to make the model formulation virtually self-explanatory to the engineering user. This has been achieved providing the user does not artifically complicate his model by allowing numerous artificial choices between options, only one of which will be used at one time. For example, it would be tempting to a conventional programmer, when developing a module to estimate drag, to include the relationship for all the types of helicopters and selecting the appropriate one by a coded input such as "l" = cargo helicopter, "2" = utility helicopter, etc. This kind of programming is to be discouraged because it tends to obscure the analytical model.

It is strongly suggested that, when analyzing different helicopters, the proper equations are placed in the proper modules. These changes are easy to make and the engineer will always know what model he was using. This, of course, is the objective of this program.

One of the great advantages of this rrogram is that computations can be easily performed that were not envisioned by the original programmer. It is suggested that the engineering users do not hesitate to increase the sophistication of the computations by adding new modules, modifying old ones, using new types of data.

Another advantage of this program is that it is possible to vary any parameters without having made prior provision in the basic program. For example, suppose it were desired to study several combinations of number produced (NP), monthly flight hours (MFH) and yearly attrition rate (YAR). In this case the control module could be preceded by a POINT and READ statement and followed by a PRINT and an ITERATE statement as follows:

POINT NEW READ

Original control module

PRINT NP, YAR, MFH ITERATE TIMES = 10, FROM NEW

This will cause data to be read in ten times and the complete computation repeated. In reading data, note that the last used values are in effect until a new value is computed or read in as data. Thus, the data package following this modified program could be as follows:

```
/*
/* (end of model input)
NP = 1000, YAR = 0, MFH = 100
/*
MFH = 300, NP = 100
/*
YAR = 10
/*
YAR = 50, NP = 100
/*
NP = 500
/*
YAR = 10, MFH = 200
/*
etc.
```

Thus, it is seen that by adding the few cards shown above, it is possible for the engineer to vary any parameters he wishes and in any manner he wishes.

There is an area where the user must use some caution. was intentional in the design of ZODIAC II that no argument list be used (as in FORTRAN), and that all interchange of data between modules be carried out through the common This technique helps to minimize the risk of variables. making local changes in modules. However, if the same module is used at more than one point in the control module, some of the same variables will change their values more than once during the computation. This is no problem unless it is desired to use one of the results of an early use of a module after the module has been run again. The same effect occurs if the same variable is computed in different modules. For example, consider the computation of fuel load, WFL, at different points in a mission where each segment makes a computation of the form WFL = WFL + DELTA.

RUN MOD TAKE OFF
RUN MOD CLIMB
RUN MOD CRUISE
etc

If it is desired to know at some later point the fuel used after takeoff but before climb, this can be accomplished by naming a new variable and inserting the simple equation as follows:

RUN MOD TAKE OFF
WFLO = WFL
RUN MOD CLIMB
etc

WFLO will retain its value as desired. WFL must be in a COMMON statement in the control module.

Techniques such as suggested above will be found to be readily picked up by engineers without any conventional programming experience in a short time.

METHOD APPLICATIONS

UTILITY MISSION

As an application of the techniques and computer program discussed, a number of conditions have been analyzed. Most of the data presented here is for the utility mission as described in Tables I and II. In addition to the data discussed previously, the following parameters have been used in these computations:

NP (no. of ship produced) = 1000
YAR (yearly attrition rate) = 40
SL (system life) = 10 years
WCR (crew weight) = 400 lb
MFH (average monthly flight hours) = 100 hr
PM (power margin) = 5 percent
NEN (number of engines) = 2
DL (disk loading) = 8 lb/ft²
TS (main rotor tip speed) = 700 ft/sec
BL (blade loading) = 80 lb/ft²
NRM (no. of main rotor blades) = 4
SM (airspeed margin to stall) = 10 kt
RCP (fuel reserve) = 10 percent

The first design point was taken as 4000 ft, 95°F, 500 ft/sec rate of climb. "Current" SFC data was used (See Figure 3).

For the statistical weight analysis the following assumptions were made (see Table III):

AG = 1 (no. of auxiliary landing gears)

BF = 1 (blade folding included)

BRK = 1 (main rotor brake included)

ITR = 1 (intermediate tail rotor gearbox included)

KLG = .0329 (tricycle landing gear)

KNAC = .96 (nacelle for twin engines mounted to transmission)

NR = 1 (no. of main rotors)

NULT = 4.5 (ultimate load factors)

TAF = 13 (type of aft fuselage (see Table III))

TPU = 0 (no auxiliary power unit)

TPY = 62 (type of pylon configuration (see Table III))

The ground rules used are as follows:

- The disc loading at the second design point is the same as for a single-point design helicopter. This results in a reduced disc loading at the first design point for the two-point design helicopter.
- The rate of climb specified for the single-point design helicopter is also obtained for both the second and first design points of the two-point design helicopter.
- 3. The "probability of hover" calculation includes the requirement to achieve the above vertical rate of climb.
- 4. All designs include the fuel load required for the standard mission.

The second design points studied included all combinations of altitude from 0 to 4000 ft in increments of 1000 ft and temperatures from 20°C to 35°C in increments of 5°C.

Payload Utilization

A payload utilization function was used as follows:

Payload

(% of 2nd Point Payload)	§ Utilization		
40	15		
60	25		
80	30		
100	25		
110	5		

The model listing is given in Appendix II.

Weight Variation

The variation of the gross weights of the two-point design helicopters is shown in Figure 19 for combinations of design altitude and design temperature. This figure shows the gross weight at point two, which is the maximum gross weight at the second design point making use of all the power available at this condition. At this point, the helicopter can hover and carry out the specified vertical rate of climb (500 ft/sec).

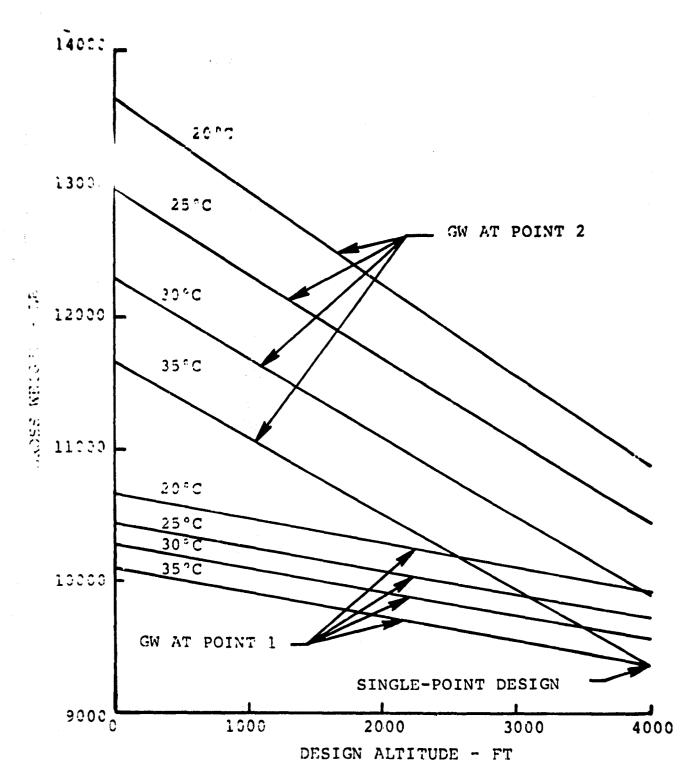


Figure 19 Two-Point Design Gross Weights for Utility Mission.

Also shown in Figure 19 is the resulting gross weight at point one, that is, with the mission payload. The changes in these weights are due to the changes in empty weight and mission fuel requirements. The gross weight at the second design point includes, in addition, the increased payload.

Figure 20 illustrates the payload capability as a function of the second design point. Note that at point one, the standard mission payload applies to all second design points.

Engine and Transmission Ratings

Figure 21 illustrates the effect of second-point design selection on transmission limits. As the second-point design temperature and altitude are reduced, the engine power available at the second design point is increased. The transmission rating is increased to match this power level, and the engine is derated less and less.

Figure 21 also indicates an effect of second-design point conditions on required power rating. This is a secondary effect and results from empty weight changes as the second-design point capability is added to the helicopter. As the second-design point temperature or altitude are decreased, the empty weight increases, and the first design point requirements can no longer be met with the single-point design engine.

Cost Variation

The computed cost per flight hour is shown in Figure 22 for several payloads. This cost includes initial costs which are primarily a function of empty weight and operating costs which reflect the effect of the ratio of actual gross weight to design (second point; gross weight. For small payloads the costs are only slightly sensitive to the second design point; however, as the payload increases this sensitivity also increases. This figure shows typical data obtained.

Hover Probability

The cumulative joint probability of hover is an extremely important factor in the overall cost effectiveness computation. It is a factor which is very sensitive to the assumed environmental operating conditions of the helicopter. It is also a quantity which tends to reduce the cost effectiveness of more stringent design conditions. As an illustration of this effect, at a 100-percent payload condition the single-design point helicopter can hover (and climb) 84 percent of the time. That is, 84 percent of the time the environmental

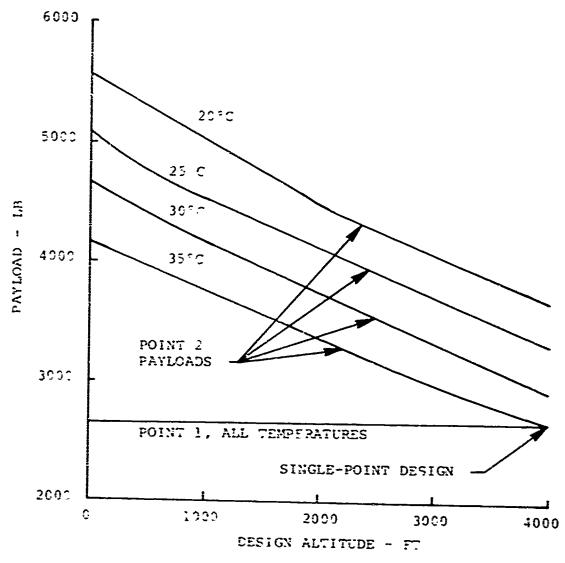


Figure 20. Two-Point Design Payloads for Utility Mission.

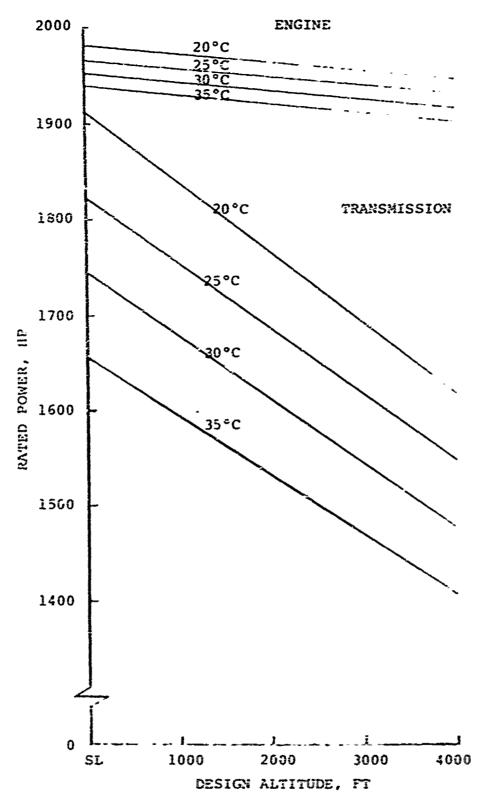


Figure 21. Engine and Transmission Ratings for Two-Point Design Helicopters.

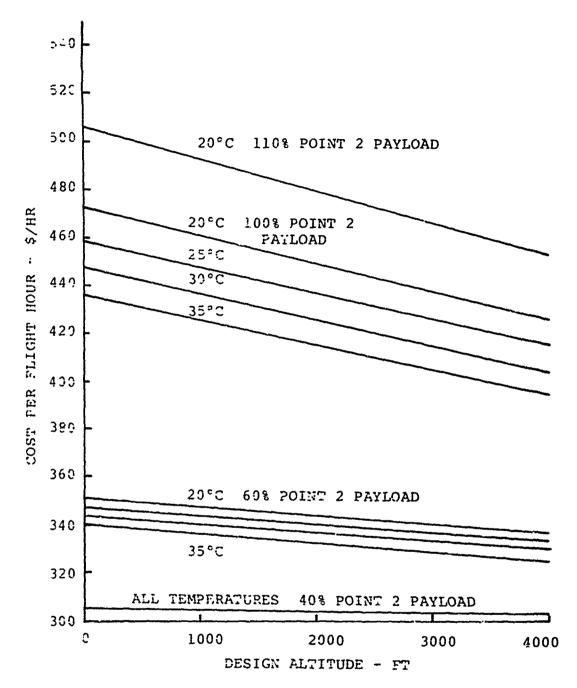
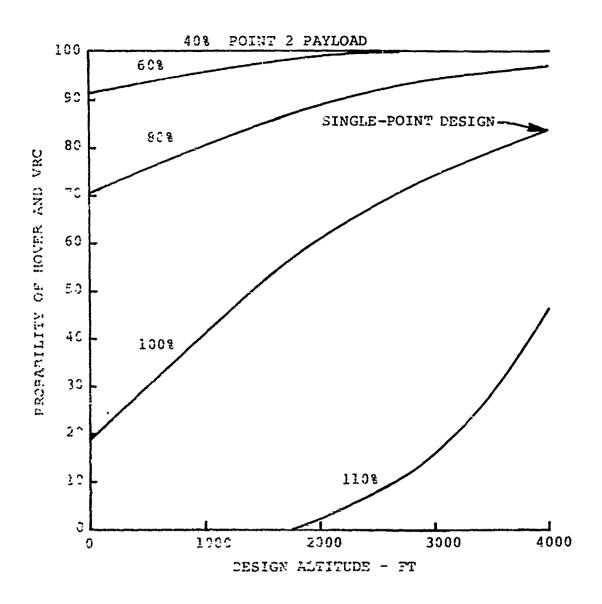


Figure 22. Typical Cost Per Flight Hour Results for Utility Mission.

conditions can be expected to be less stringent than 4000 ft, 35°C. However, a single-point helicopter designed for 2000 ft, 25°C, for example, will be able to hover with its design payload only 34 percent of the time since over much less of the area and time will the operating conditions be less stringent than this design point. Of course, the two-point design helicopter will be carrying larger payloads so there is a rather delicate balance between these two factors. Figure 23 (a-d) presents the probability of hover obtained.

Overall Cost Effectiveness

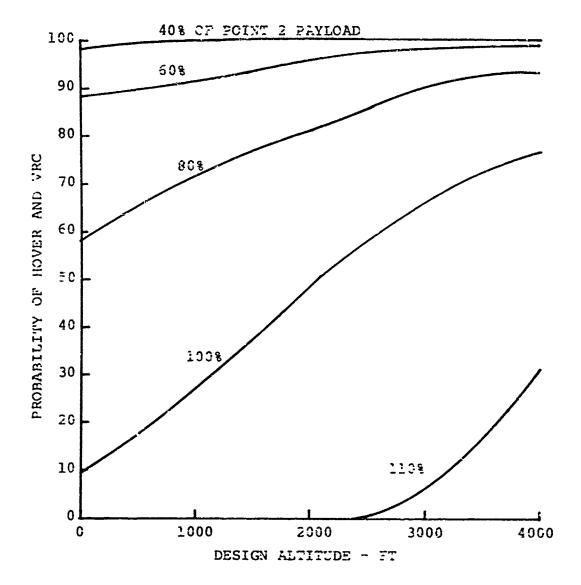
The final results, including the effects of assumed payload variation, costs, and hover probability, are given in Figure 24. It is seen that local peaks occur at certain temperatures. The optimum point calculated appears to be at 4000 ft, 20°C representing about a 10-percent increase in cost effectiveness compared to the single-point design.


This "optimum" helicopter has an increased design gross weight of about 15 percent and an increased payload at the second design point of about 40 percent.

It must be emphasized, however, that these results are sensitive to the predefined mission, assumed number of production units, assumed payload utilization, environmental statistics, and numerous other factors which will vary with the particular requirements for thi vehicle under study.

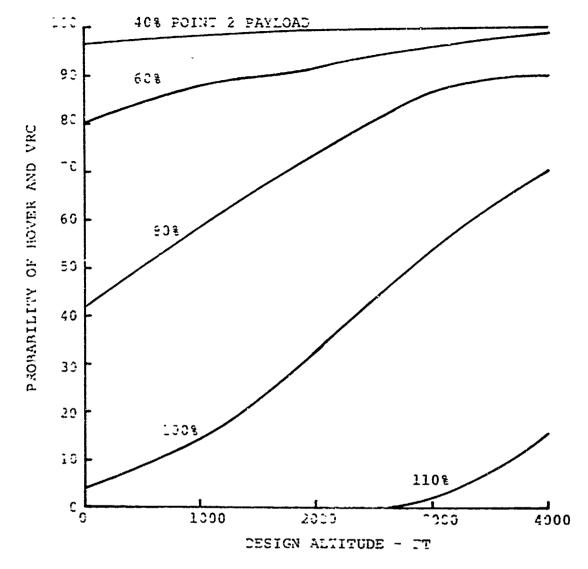
WEIGHT SENSITIVITY

One of the most significant portions of the analytical model is the statistical weight model. In order to gain some insight into the sensitivity to the empty weight, some of the previous computations were repeated with an arbitrary 20-percent increase in predicted empty weight. For comparative purposes the payloads are shown in Figure 25. A comparison of the cost per hour is shown in Figure 26.


The change in probability of hover with increased weight is interesting. At payloads below 100 percent, the heavier helicopter has lower probability of hovering. At 100 percent payload (note that the payloads are not the same), the probabilities are equal. At over 100 percent the heavier helicopter has increased probability of hover. This effect is illustrated in Figure 27 for 25°C. The effect is the same at other temperatures.

or electerates and elected by the confidence of the confidence of

a. Design Temperature = 35°C


Figure 23. Probability of Hover and VRC for Utility Mission.

b. Design Temperature = 30°C

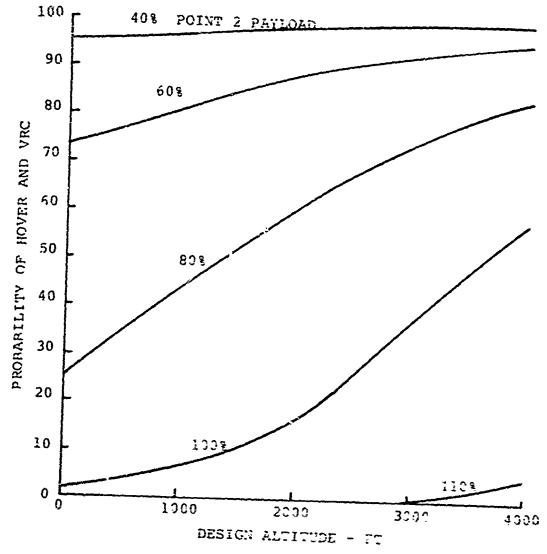

THE PROPERTY CONTRACTOR OF THE PROPERTY OF THE

Figure 23 - Continued

c. Design Temperature = 25°C

Figure 23 - Continued

d. Design Temperature = 20°C
Figure 23 - Continued

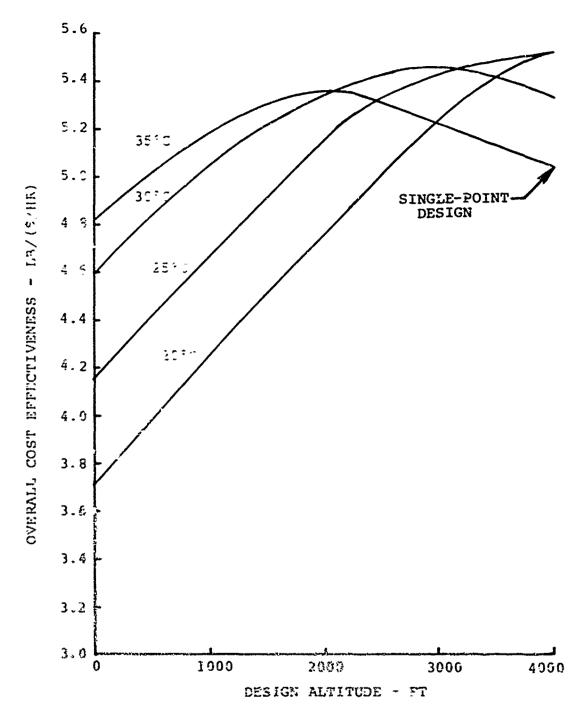


Figure 24 Overall Cost Effectiveness for Illustrative Utility Mission.

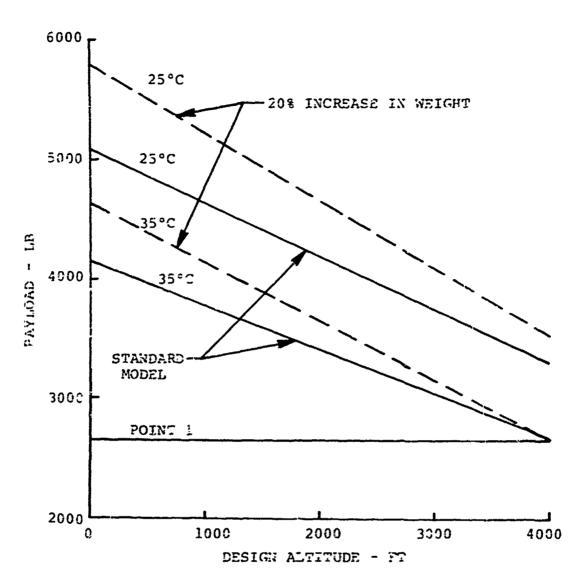


Figure 25. Effect of 20% Increase in Empty Weight Model on Payload - Ctility Mission.

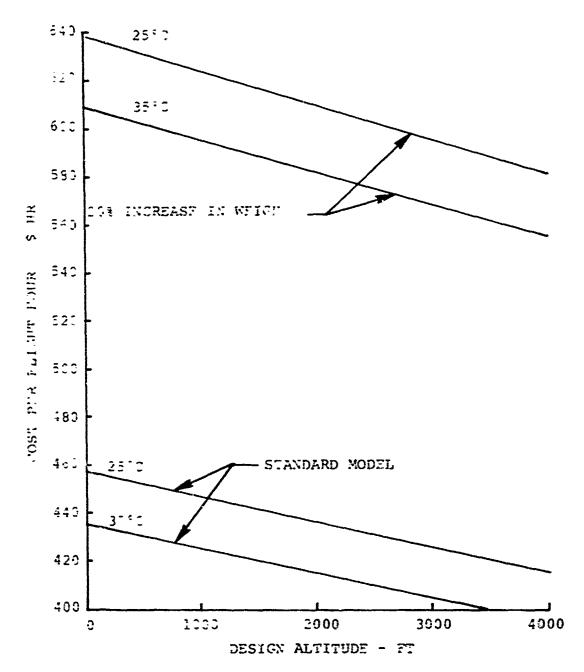


Figure 26. Effect of 20% Increase in Empty Weight Model on Cost Per Hour - Utility Mission.

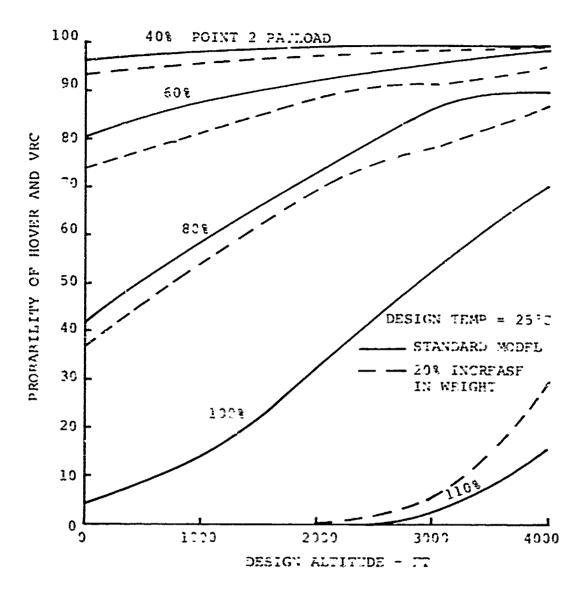


Figure 27. Effect of 20% Increase in Empty Weight Model on Probability of Hover - Utility Mission.

The overall cost effectiveness is shown in Figure 28. While the effectiveness is reduced because of increased costs and reduced probability of hover (for 70 percent of the time), the curves have very similar shapes.

PAYLOAD UTILIZATION EFFECTS

The previous analysis used a payload distribution based on percentages of the maximum. This implies that the size of the payload will always depend on the capability of the helicopter. At the opposite extreme is the concept of missions having no relationship to the maximum capability of the helicopter but having a requirement for the transportation of specific payloads. To consider the effect of such a payload distribution the same schedule of payload was used, except that the payload was a percentage of the fixed first point design payload rather than the variable second point payload.

while the first approach resulted in a highly loaded helicopter, this approach results in lightly loaded helicopters. In general, the probability of hover is significantly increased and the costs are reduced because of reduced maintenance. Since the same payloads are carried at reduced operating costs, the cost effectiveness tends to increase at the more stringent design points. This effect is illustrated in Figure 29. Note that the data of Figures 19 and 20 also apply to this condition.

This result, in effect says that for a given fixed payload, the larger the helicopter the less the cost will be because the reduced unscheduled maintenance is the dominating factor. This appears unrealistic and suggests a flaw in the cost model.

In actuality, a distribution which is partially fixed and partly dependent on the helicopter's capability is probably more realistic. If we take as an example a 50-percent mix of the two types discussed, the curves on Figure 29 are the result. A comparison of the curves of Figure 29 and Figure 24 illustrates how sensitive the optimization can be to the predicted payload schedule.

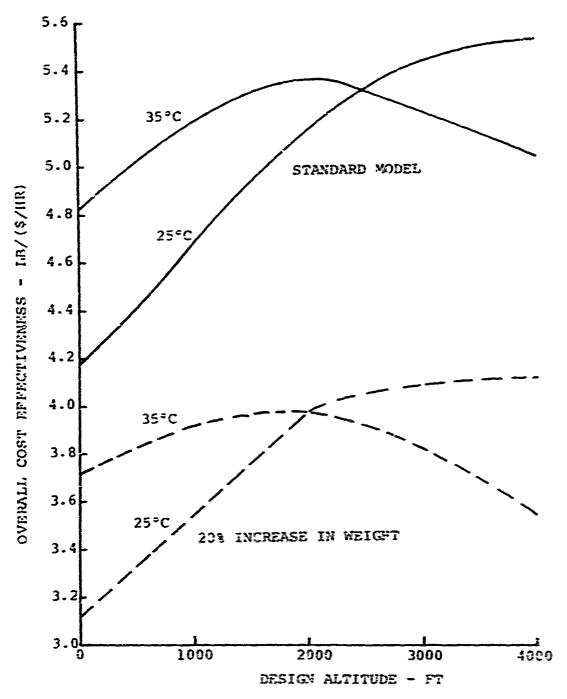


Figure 28. Effect of 20% Increase in Empty Weight Model on Overall Cost Effectiveness of Utility Mission.

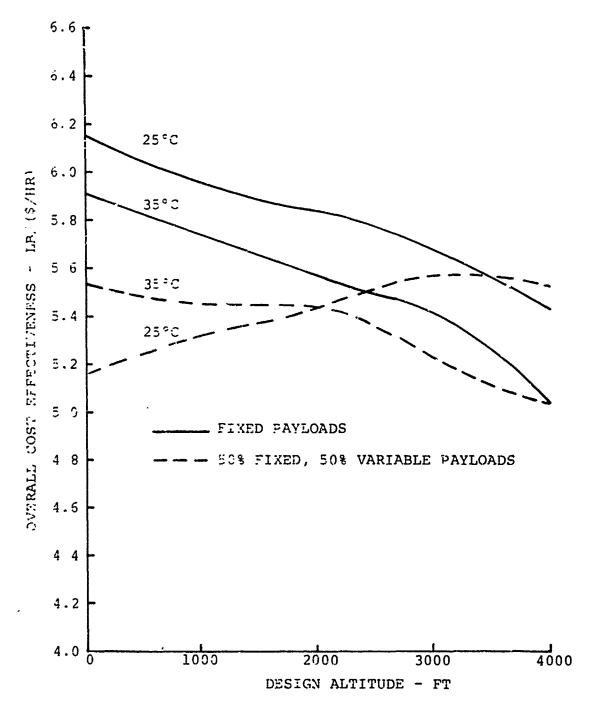


Figure 29. Overall Cost Effectiveness for Fixed and Variable Payload for Utility Mission.

GUNSHIP

Sample computations were carried out for the Gunship Mission. The input is the same as for the Utility Mission except as follows:

```
DL (Disc Loading) = 9 lb/ft<sup>2</sup>
BL (Blade Loading) = 90 lb/ft<sup>2</sup>
TAF = 15 (See Table III)
TPY = 14 (See Table III)
```

The gross weights and the overall cost effectiveness results for 35°C are shown in Figures 30 and 31.

CRANE

Computations for the Crane Mission were performed for the mission as described in Tables I and II. The input is the same as for the utility ship except for the following:

```
NEN (no. of engines) = 4
DL (disc loading) = 9 lb/ft
TS (tip speed) = 750 ft/sec
NMR (no. of main rotor blades) = 6
BL (blade loading) = 90 lb/ft<sup>2</sup>
ITR = 0 (See Table III)
KLG = .0405 (See Table III)
KNAC = 2.26 (See Table III)
TAF = 10 (See Table III)
TPU = 1 (See Table III)
TPU = 25 (See Table III)
```

The gross weights and payloads and the overall cost effectiveness are shown on Figures 32 and 33.

TRANSPORT

The results of a sample run of the transport model are presented in Figure 34. The mission for the transport is described in Tables I and II. The transport model differs from the Utility in the following manner:

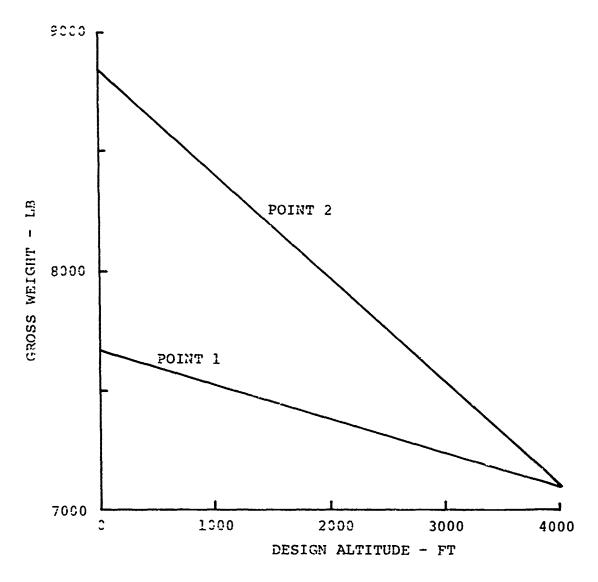


Figure 30. Gross Weights for Gunship Mission for 35°C.

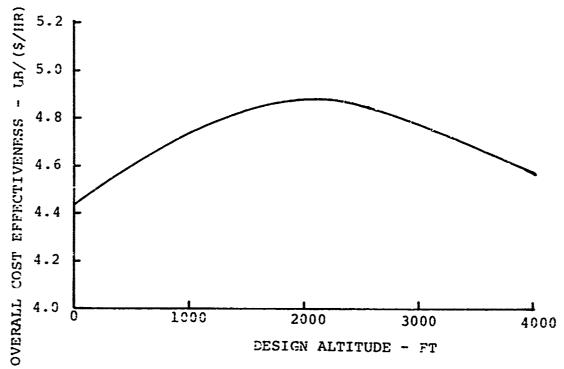


Figure 31 Overall Cost Effectiveness for Gunship Mission for 35°C.

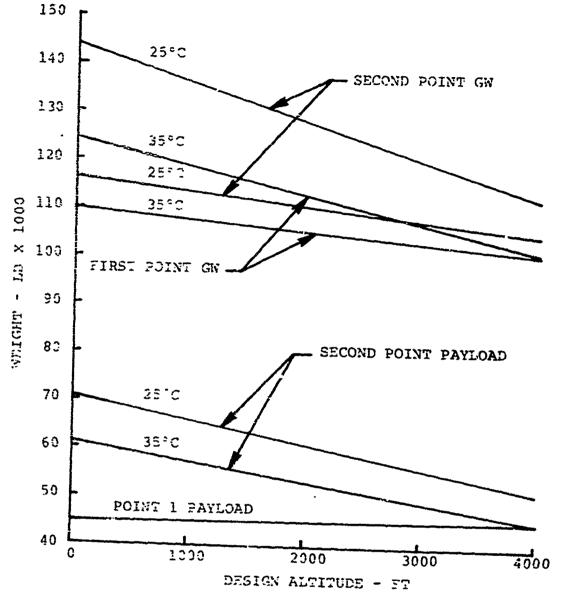


Figure 32 Fayloads and Gross Weights for the Grane.

TOTAL BASE SECTION OF THE SECTION OF

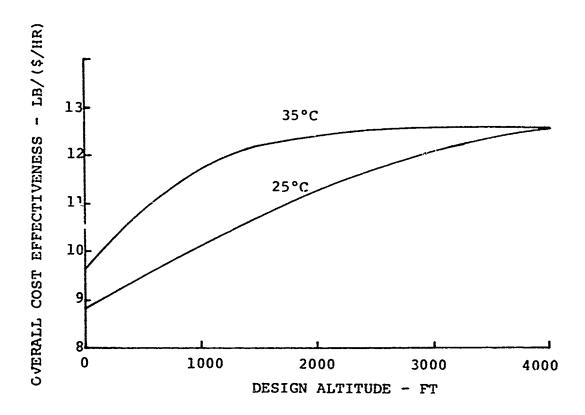


Figure 33. Overall Cost Effectiveness for Crane Mission.

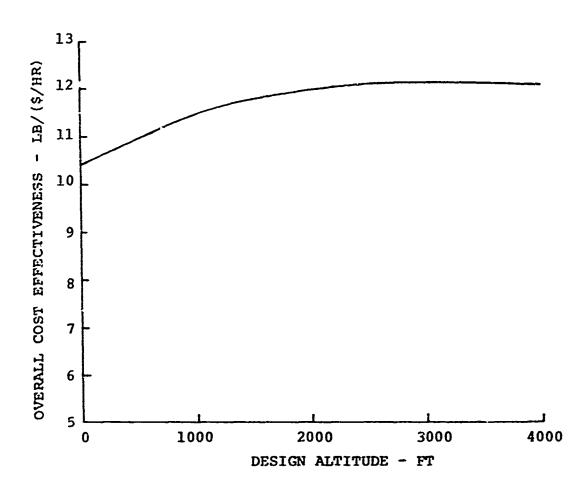


Figure 34. Overall Cost Effectiveness for Transport Model.

DL (disc loading) = 9 lb/ft²
NMR (no. of blades) = 5
NEN (no. of engines) = 4
TAF = 9 (See Table III)
TPY = 45 (See Table III)

**LG = .0247 (See Table III)

= 2 (See Table III)

iAC = 2.26 (See Table III)

?*U = 1 (See Table III)

OBSERVATION

The Observation Model differs from Utility in a very basic manner. Instead of increasing the payload at the second design point, the loiter time was increased. The cost effectiveness portion of the model is simplified considerably since there are no probability of hover or payload distribution considerations. For cost effectiveness loiter time is used instead of payload. The mission for the Observation ship is contained in Tables I and II. Other data which differs from the Utility Model is as follows:

DL (disc loading) = 4 lb/ft²
TS (tip speed) = 650 ft/sec
BF = 0 (See Table III)
ITR = 0 (See Table III)
BRK = 0 (See Table III)
TAF = 10 (See Table III)
TPY = 25 (See Table III)
KLG = .0157 (See Table III)
AG = 0 (See Table III)
KNAL = 1.19 (See Table III)

The cost effectiveness results of a run of the Observation model are shown in Figure 35.

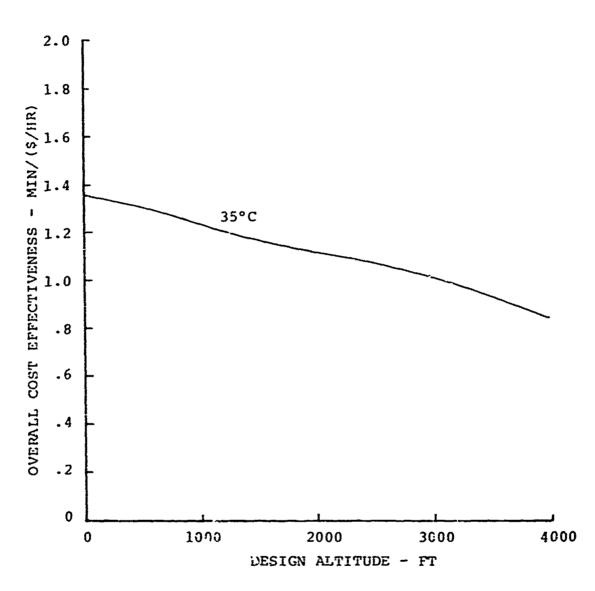


Figure 35. Overall Cost Effectiveness for Observation Model.

CONCLUSIONS

- An analytical model has been assembled capable of evaluating the effects of a second design point for helicopters.
- 2. A computer program has been developed which is capable of implementing the solution of these analytical models.
- 3. It has been shown that optimization points may be obtained that are quite sensitive to several factors. Two of the most important are the assumed payload utilization statistics and the assumed operating environment.

- 4. The analytical models developed appear to generally give rational results. There are areas, however, where improvements may be made. One of the most worthwhile areas for improvement is the cost model.
- 5. The objective of this project has been achieved: development of a method which can be used to provide an insight into two-point design criteria and which is capable of selecting criteria which will improve helicopter productivity and cost effectiveness.

LITERATURE CITED

- Tanner, W. H., CHARTS FOR ESTIMATING ROTARY WING PERFORMANCE IN HOVER AND AT HIGH FORWARD SPEEDS, NASA CR-114, National Aeronautics and Space Administration, Washington, D. C., November 1964.
- Bossler, R. B., Jr., POWER TRANSFER SYSTEMS FOR FUTURE NAVY HELICOPTERS, Kaman Aerospace Corporation; Report No. R-1032, Naval Air Systems Command, Washington, D. C., June 1972.
- Bellaire, Robert, and Bousman, William, Lt., A STUDY OF THE ARMY HOT DAY DESIGN HOVER CRITERION, ADS TN 68-1, AVSCOM, St. Louis, Mo., August 1970, AD 717025.
- 4. LaValiee, R. S., and Sing, C. Y., UH-1D HORSEPOWER REQUIREMENT STUDY, Technical Operations, Incorporated; CDRG-M-185. United States Army Combat Developments Command, Fort Belvoir, Virginia, June 1965.
- 5. Porterfield, John D. and Maloney, P.F., EVALUATION OF HELICOPTER FLIGHT SPECTRUM DATA, Kaman Aerospace Corporation; USAAVLABS Technical Report 68-68, U.S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, October 1968, AD 680280.

- 6. Yates, E. H., COST ANALYSIS AS AN AID TO AIRCRAFT DESIGN, Journal of Aircraft, Vol. 2, No. 2, March-April 1965, pp. 100-107.
- 7. Yates, E. H., A METHOD FOR ESTIMATING THE PROCUREMENT COST OF AIRCRAFT, General Electric Co., Technical Military Planning Operation, RM60TMP-30, Vol. I, June 1960.
- 8. Biagioli, M. A., COST ESTIMATING RELATIONSHIPS FOR MILITARY HELICOPTER AIRFRAME PROCUREMENT, U. S. Army Aviation Material Command, St. Iouis, Mo., November 1967, AD 673184.
- 9. U. S. ARMY AVIATION PLANNING MANUAL, Department of the Army Field Manual, FM 101-20, Headquarters, Department of the Army, August 1968.

LITERATURE CITED (Continued)

- 10. Freudenthal, A. M., and Wang, P. Y., ULTIMATE STRENGTH ANALYSIS OF AIRCRAFT STRUCTURES, Journal of Aircraft, Vol. 7, No. 3., May-June 1970, pp. 205-210.
- 11. Chenowith, H. B., AN INDICATOR OF RELIABILITY OF ANALYTICAL STRUCTURE DESIGN, Journal of Aircraft, Vol. 7, No. 1, January-February 1970, pp. 13-17.
- 12. Cook, T. N., RELIABILITY AND MAINTAINABILITY DATA ON FIVE HELICOPTERS, Kaman Aerospace Corporation Internal Memo, 21 March 1972.
- 13. Berman, A., ZODIAC COMPUTER PROGRAM FOR PARAMETRIC ANALYSIS, Kaman Aircraft Corporation; RN 70-8, December 1970.

APPENDIX I ZODIAC II PROGRAM LISTING

A RESIDENCE OF THE RESIDENCE OF THE PARTY OF	
IMPLICIT INTEGER (A-U), REAL (V-Z)	ZD2 1
05ETHE ETTE 4/1000.102.11.8/41	202 2
CEFINE FILE 5(101,20,0,FI5)	702 3
FEERE ELLE 6(2).905.L.FI6)	ZD2 4
INTEGER+2 EQL(1CC,1C,4),PRTLST(50)	ZC2 5
COMMEN /BUG/ DEBUG	ZD2 6
CCYPCK /MOD/ VARARY(620), NAPARY(400), EGU, PRTLST	202 7
COMMON /COMMN/ STPCOM.STIREG.STPREG.COM(200)	ZCZ 8
COMMON /GEN/ ALBET(5C)	202 9
CIMENSION MODNAMIS)	ZD2 10
STPCC# = 200	ZC2 11
STIREG = 2C1	ZC2 12
STPREG # 400	ZD2 13
CALL INST	202 14
CALL MAININ	202 15
CALL CATAIN	ZC2 16
CALL MANSET	
IF ICEBUG .EO. 1) CALE PRINTOTTI	202 18
100 CALL POSINIA, MCDNAM, PCOMUP)	££2 19
IFIN.EO.C) GO TO 110	ZCZ 20
IF (CEBUG .EO. 1) CALL PRINTOT(1)	202 22
CALL STOMOC(MCONAM, MGONUM)	ZC2 23
110 CO TG 1CC	202 24
110 CALL MAINRA	202 25
CALL ERROR(O) CALL EXIT	202 26
END CALL EXIT	
£40	ZD2 28
	The second secon

SUBROLTIKE INIT	INT	1
IMPLICIT INTEGER (A-U).REAL(V-Z)	INT	Ž
INTEGER+2 EQU(10C.10.4) .PATLST(50)	INT	3
CCMMCN /GEN/ ALBET(50)	INT	á
COMMON /MOD/ VARARY(62C); AAPARY(400), EQU. PRILST	INT	5
COPPEN /COPPN/ STPCOM, STTREG, STPREG, COM (200)	int-	- í
COMMON /TAB/ TABL(20.2)	INT	7
CIMENSION LBET(SC)	INT	ė
DATA LOET /*=) 6-3 6-4	9 INT	ۋ
	T INT	10
BS R Q P O N M L K J I H G F E C	C INT	ii
	- int	12
CG 100 I = 1.620	1141	13
100 VARARY(1) = 0	lint	14
LBET(2) = 21C1362752	INT	15
LBET(4) = 163160C7C4	IST	16
00 110 1 = 1.50	1151	17
TIO ALBET(I) = LBET(I)		18
CALL ITCHK(0,-7)	INT	16
CO 12C I = 1.1CO	1141	20
EO 120 J = 1.10	- 21AT	21
CO 120 K = 1.4	31NT	22
120 EQU(1.J.K) = 0	21%T	53
FOU(1.1.1) = -1		
CC 130 1 = 1.4G0		24
130 AMARY(I) = 0		25
[0 14C 1 = 1,2C)	_ 11at	56
146 COM(1) = 0	likt	27
- · · · · · · ·	liri Iri	28
		29
AONE = 0		_
CNE = 1	INT .	30
CNE * I brite (5*1) NONE,ONE	INT INT	30 31
CNE = 1 hRITE (5*1) NONE,ONE EQ 150 I = 1,20	INT INT INT	30 31 32
CNE = 1 bRITE (5°1) NONE,ONE EO 150 I = 1,20 TABL(I,1) = 0	INT INT IINT IINT	30 31 32 31
CNE = 1 bRITE (5°1) NONE,ONE EO 150 I = 1,20 TABL(I,1) = 0 150 IABL(I,2) = 0	INT INT IINT IINT IINT	30 31 32 31 32 31
CNE = 1	INT INT INT IINT IINT IINT INT	30 31 32 31 24 25
CNE = 1 bRITE (5°1) NONE,ONE EO 150 I = 1,20 TABL(I,1) = 0 150 IABL(I,2) = 0	INT INT IINT IINT IINT	30 31 32 31 32 31
CNE = 1	INT INT INT IINT IINT IINT INT	30 31 32 31 24 25
CNE = 1	INT INT INT IINT IINT IINT INT	30 31 32 31 24 25
CNE = 1	INT INT INT IINT IINT IINT INT	30 31 32 31 24 25
CNE = 1	INT INT INT IINT IINT IINT INT	30 31 32 31 24 25
CNE = 1	INT INT INT IINT IINT IINT INT	30 31 32 31 24 25
CNE = 1	INT INT INT IINT IINT IINT INT	30 31 32 31 24 25
CNE = 1	INT INT INT IINT IINT IINT INT	30 31 32 31 24 25
CNE = 1	INT INT INT IINT IINT IINT INT	30 31 32 31 24 25
CNE = 1	INT INT INT IINT IINT IINT INT	30 31 32 31 24 25
CNE = 1	INT INT INT IINT IINT IINT INT	30 31 32 31 24 25
CNE = 1	INT INT INT IINT IINT IINT INT	30 31 32 31 24 25
CNE = 1	INT INT INT IINT IINT IINT INT	30 31 32 31 24 25
CNE = 1	INT INT INT IINT IINT IINT INT	30 31 32 31 24 25
CNE = 1	INT INT INT IINT IINT IINT INT	30 31 32 31 24 25
CNE = 1	INT INT INT IINT IINT IINT INT	30 31 32 31 24 25
CNE = 1	INT INT INT IINT IINT IINT INT	30 31 32 31 24 25
CNE = 1	INT INT INT IINT IINT IINT INT	30 31 32 31 24 25
CNE = 1	INT INT INT IINT IINT IINT INT	30 31 32 31 24 25
CNE = 1	INT INT INT IINT IINT IINT INT	30 31 32 31 24 25
CNE = 1	INT INT INT IINT IINT IINT INT	30 31 32 31 24 25
CNE = 1	INT INT INT IINT IINT IINT INT	30 31 32 31 24 25

CURROLITANT COROLINA		
SUBROUTINE ERROR (N)	ERR	1
INTEGER*2 NER(10C)	ERR	2_
CATA 1.NER/101+0/	ERR	3
IF(N .EQ. C) GO TO 110	ERR	4
	ERR	5_
100 FORMAT (2(18(* ERROR *1/), ERROR NUMBER *, 14,/,2(18(* ERROR *)/))		6
I = I + I	ERR	7
IF (I .LE. 100) NER(I) = N	ERR	8
RETURM	ERR	9
110 brite (3,120) (NER(J), $J = 1,1$)	ERR	10
120 FORMAT (*1 SUMMARY OF ERRORS *./.4313/4313/1413)	ERR	11
RETURN	ERR	
END	ERR	13
		••
The contract where a summaring a suppression is set at 1 to		
The state of the s		

SUBROLTINE MODIN(NCARD, MOCNA, MOCNUM)	EIN	1
IMPLICIT INTEGER (A-U).REAL(V-Z)	EIN	Ž
COMMON /GEN/ ANDET(50)	EIN	3
COMMON /ALL/ VLST(50), MODNAM(30.5)	EIN	4
INTEGER 4.2 FOULTIOG 10-4) - PRTI ST(50)	EIN	5
COMMEN THOOT VARARY(620), NAMARY(400), EQU. PRILST	EIN	-6
COMMON /COMMN/ STPCOM, STTREG, STPREG, COM(200)	EIN	7
CIMENSION STAT(8C), NAME(4), TEM(80), NVAR(16)	EIN	8
CIMENSION ARG (40), HODNA (5)	EIN	9-
NCARD = 0	EIN	10
K0EQ = 100	EIN	11
E0 100 1 = 1,100	TEIN	72-
00 1CC J = 1.10	2EIN	13
CO 1CO K = 1,4	3E1N	14
100 EQU(1,J,K) = 0	3EIN-	715
EQU(1,1,1) = -1	EIN	1 ó
EQU(2,1,1) = -1	EIN	17
EQU(1,1,4) = 2	EIN-	18 -
$CO \ 11C \ I = 1.400$	1EIN	19
110 NAMARY(I) = 0	1EIN	20
00 120 I = STTREG, 600	1EIN	21
120 VARARY(I) = 0	1EIN	22
CO 13C I = 1.5C	1EIN	23
130 PRTLST([]) = 0	TEIN	24
C	EIN	25
C READ STATEMENTS IN	EIN	26
С	EIN	. 27
END=0	EIN	28
140 READ(1.150,END=440) STAT	EIN	29
150 FORMAT(20A1)	EIN	30
NCARC = NCARD + 1	EIN	31
IF (NCARD .EQ. 1) WRITE (3,160)	EIN	32
160 FORMAT (*1 "EQUATIONS")	EIN	⁻ 33
IF (NCARD .EQ. 60) WRITE (3.170)	EIN	34
170 FORMAT (*1 EQUATIONS CONT.*)	EIN	35
WRITE(3,180) NCARD, STAT	EIN-	
180 FORMAT(14,3x,80A1)	EIN	37
CO 190 I = 1,80	1E IN	36
190 IER(1) - C	TE IN	
	EIN	40
C REMOVE BLANKS AND COMMENTS	EIN	41
AICH A	EIN-	-
NCM = 0	EIN	43
CO 2CO K = 1,80	1EIN	44
17 (STATIK) -EQ. ALBET(50)) RCH + 1	IEIN	45
200 IF (STAT(K) .EQ. ALBET(13) .OR. NCH .EQ. 1) STAT(K) = 0	1EIN	46
CALL RHYZER(STAT,L)	EIN	47
C CHECK TYPE OF STATEMENT 210 CALL COMMD(STAT. /YP.ARG.ERR)	EIN EIN	48
IF (ERR .NE. 0) GO TO 140	EIN	50
IF (TYP -EC- 0) GO TO 370	EIN	
IF (TYP .EC. 13) GO TO 320	EIN	52
IF (TYP .EQ. 14) GO TO 140	EIN	53
GU TO (22C,240,250,26G,260,140,260,140,260,270,260,290), TYF	EIN-	
	EIN	55
-	F 1.4	,,

C	ITERATE STATEMENT	EIN 56
_ <u>C</u>		EIN 57_
220	NIT = EQU(1,1,4)	EIN Se
	IF (NIT .LE. 5) GO TO 230	EIN 59
	CALL ERROR(22)	EIN 60_
	GO TC 140	EIN 61
230	EQU(1,NIT,1) = ARG(1)	EIN 62
	EQU(1,N1T,2) = ARG(3)	EIN 63
	EQU(1,NIT, 3) = ARG(4)	EIN 64
	EQU(1.NIT.4) = ARG(5)	EIN 65
	EQU(1,1,4) = NIT + 1	EIN 66
	GO TO 140	EIN 67"
С		EIN 68
č	INORCER STATEMENT	EIN 69
- č	THORDER STRICTERS	EIN 70 -
_	EQU(1,1,3) = 1	EIN 71
240		EIN 72
-с	GO TC 140	-
C	MODILE NAME STATEMENT	EIN 73
	MODULE NAME STATEMENT	EIN 74
<u></u>	CALL MONAUCAN AREA	E!N 75
250	CALL PONAHE(K, ARG)	EIN 76
	EQU(1,1,1) = K	EIN 77
	MODNLM = K	EIN_78
_	GO TC 140	EIN 79
C		EIN 80
C	ILLEGAL COPMAND FOR MODULE	EIN 81
		EIN 82
260	CALL ERROR(24)	EIN 83
	GO TC 140	EIN 84
_c		EIN 85
C	PRINT STATEMENT	EIN 86
С		EIN 87
270	CO 200 I = 1,40	15IN EE
280	PRTLST(1) = ARG(1)	15IN 89
	EQU(1.10.1) = 1	EIN 90
	CO TO 143	EIN 91
C	-	EIN S2
C	IF - EXPRESSION STATEMENT	EIN 53
		EIN 94
290	CO 300 I = 2.NOEQ	1EIN 95
	NIF = 1	1EIN 56
	TF (EQUIT.1.1) .EQ. 0) GO TO 310	1EIN -97
300	CONTINUE	1EIN 98
	CALL ERROR(2)	
	CO TO 14C	EIN 59
310	EQU(NIF,2,1) = -6	EIN 100
2.0	EQU(NIF,2,2) = ARG(1)	EIN 101
	EQUINIF, 2, 3) = ARG(3)	EIN 102
	EQU(NIF, 2, 4) = ARG(2)	EIN. 1C3
	GD TO 370	EIN 104
	00 10 310	EIN 105
Č	TARLE LOOP HO	EIN 106
_	TABLE LOOK UP	EIN 1C7
C	[[[]]]]	EIN 108
320	CO 330 T = 1,100	1EIN 109
	EQ = 1	1EIN 110

IF (EQU(1,1,1) .EQ. 0) GO TO 340	1E IN	111
	1214	
330 CONTINUE CALL ERROR (3)		-i13-
60 10 140		114
340 CO 350 I * 1.6	REIN	115
	TEIN	116
IF (STAT(I) .EQ. ALBET(I)) GO TO 360	1EIN	117
350 NVAR(I) = STAT(I)	IEIN	118
360 CALL NAM(NVAR,K)	- EIN	119
$EQU(EQ_{\uparrow}1_{\uparrow}1) = -1$	EIN	120
EQU(EQ,1,3) = 3	EIN	121
EQU(EC,1,4) = NCARD	EIN	122
EGU(EG, 2, 1) = -9	EIN	
EQU(EC,2,2) = kd(3)	EIN	124
EQUIEC, 2, 2) = ARG(3) EQUIEC, 2, 3) = ARG(4)	EIN	125
IF (ECU(EQ.2.3) .EQ. 0) EQU(EQ.2.3) = 401	EIN	126
EQU(EQ.2.4) = K NVAR(1) = ALBET(23-ARG(Z))	EIN	127
	EIN	128
NVAR(2) = C		129
CALL NAM(NVAR,K) EQU(EQ.3.1) = -8	EIN	1 130
EQL(EQ, 3, 1) = -8		
EQU(EQ, 3, 2) = ARG(5)		1 1 2 2
IF (ARG(5) .EQ, 0) EQU(EQ,3,2) = 401 EQU(EQ,3,3) = K	EIN	1 1 3 3
IF (ARG(5) .EQ, 0) EQU(EQ,3,2) = 401 EQU(EQ,3,3) = K EQU(EQ,3,4) = ARG(1)		
EQU(EC, 3, 4) = ARG(1)		135
CO TO 14C	- E10	136
COARCH OUT SWEET AND MARK		
C SEARCH OUT SYMBOLS AND NAMES		138
C SYMBOLS ARE REPLACED BY THE FOLLOWING NUMBERS C +=-1,-=-2,*=-3,/=-4,**=-5,[=-6,]=-7,===8	- EI	. 140
C	C 14	v 141
C 370 NP = 1		
C 370 AP = 1 1 = C 280 I = I + 1	EIN	1 143
38C I = I + 1		144
390 IF(1 . OT. L) GO TO 430		145
THE RESIDENCE OF THE PROPERTY		
IF (STAT(1) .EQ. ALBET(8)) GO TO 400 IF (STAT(1) .LT. O .OR. STAT(1) .EQ. ALBET (12)) GO TO 400	E 11	1 147
ALADE - CTATII	FIN	1 148
NARG = STAT(1) CALL SYMBOL(NARG)	. EII	¥ 149
IF (NARG .FO3 .AND. STAT(I+1) .EO. ALBET(7)) NARG =-5	EI	¥ 150
CALL SYMBOL(NARG) IF (NARG .EQ3 .AND. STAT(I+1) .EQ. ALBET(7)) NARG =-5 IF (NARG .EQ5 .AND. STAT(I+2) .EQ. ALBET(5)) NARG = -9 TEM(NP) = NARG	EI	V 151
TEMINP) = NARG	E I	Y' 152"
NP = NP+1	EI	¥ 153
75 4040 5 5 5 1-1-1	EI	154
IF (NARG .EQ9) I = I + Z	- EII	1 155
GO TO SEC	EU	N 156
400 DD 410 K = 1.16	1EI	4 157
410 KVAR(K) = 0	~1EI	N 158
K = C	EI	V 159
NMB = 0		N 160
IF (STAT(I) .GT. ALBET(24) .AND. STAT(I) .ET. ALBET(III) NHB # I	E1	N 161
420 K = K + 1	EI	N 162
hvar(K)=STAT(I)		V 163
1=1+1		V 164
IF(STAT(I) .EQ. ALBET(8)) GO TO 420	EI	N 165

	IF (STAT(I). LT. 0 .OR. STAT(I) .EQ. ALBET(12)) 60 TO 420 IF (NVAR(K) .EQ. ALBET(45) .AND. NMB .EQ. 1) 60 TO 426	EIN 166 EIN 167
	CALL NAM(NVAR,K) TEM (NP) = K	EIN 168 EIN 168
	NP= NP + 1	EIN 170
/20	GO TO 390	EIN 171
730	CONTINUE CALL SETUP(TEM.NCARD)	EIN 172 EIN 173
_c	CALL JETY TICHTON	EIN-174
Č	PREPARE FOR NEXT STATEMENT OR RETURN	EIN 175
	GO TO 140	EIN 176
440	RETURN	EIN 177
	END	EIN 178
	•	
	•	
		•

	SUBROUTINE SYMBOL (N) INTEGER SYM(8) EATA SYM /** - * / () = */	SMB 1 SMB 2 SMB 3
C C		SMB 4
	CO 1CO I =1.8 IF (N .NE. SYM(I)) GO TO 100 N= -I	ISMB 6 15MB 7 15MB 8
10	RETURN D CONTINUE END	1SMB 9 1SMB 10 SMB 11
		-

	Fi home Table beauty was		_
	SUBROLTINE NAM(N.K)	NAM	1
	INPLICIT INTEGER (A-U), REAL(V-Z)	NAM	
	INTEGER*2 EQU(10G,10,4), PRTLST(50)	NAM	3_
	COMMON /MOC/ VARARY(626).NAMARY(400).EQU.PRTLST COMMON /COMMN/ STPCOM.SSTREG.STPREG.COM(200)	NAM	4
	COMMON /GEN/ ALBET(90)	NAM_	,-
	DIMENSION N(16)	NAM	6
C.	DIFENSION MILOS	NAM NAM	7 8
- <u>c</u>	CHECK TO SEE IF N IS A NAME OR A CONSTANT.	NAM .	
č	CHECK TO SEC 11 IN 13 A MALE ON A CONSTRUCT	NAM	10
•	IF(N(1).GE. ALBET(23) .AND. N(1) .NE. ALBET(8)) GO TO 180	NAM	11
c	The state of the s	NAM -	
Č	N IS A VARIABLE NAME	NAM	13
Č		NAK	14
	CALL NAMCHP(N.NAME.NC)	NAP-	
	IF (NC .EQ. 0) GO TO 120	NAM	16
	CO 1CC I = 1.STPCOM	INAM	17
	1 = 1 · · · · · · · · · · · · · · · · ·	INAM -	
	IF (CCM(I) .EQ. NAME .CR. COM(I) .EQ. O) GC TO 110	1NAM	15
100	CONTINUE	INAM	20
	(ALL ERROR(1)	HAM	21
110	IF (CGM(L) .EQ. 0) VARARY(L) = 123.459E-15	MAL	22
	CGM(L) = NAME	NAF.	23
	AAHARY(L) = HAME	NAM	- 24°
	CO TO 17C	MAM	25
120	CC 130 I = 1,STPCOM	lnam	26
		MAN	27
	IF (NAMARYII) .EQ. NAME) GOTO 170	INAM	28
120	IF (COM(1) .EO. O) GC TC 140 CONTINUE	INAM_	
	EO 150 I = STIREG.400	- INAM-	
140	L = [INAM	
	IF (NAMARY(I) .EC. NAME) GO TO 170	INAM	
	IF (NAMARY:1) .EQ. G) SO TO 160	INAM INAM	
150	CONTINUE	INAM	34 35
	CALL ERROR (2)	NAM-	
160	NAMARY(L) = NAME	NAM	37
	VARARY(L) = 123.459E-15	NAM	38
170	K = L	NAM-	
	RETURN	NAM	- :
C		NAM	41
	A IS A CONSTANT.	NAM"	- 42-
C		NAM	43
1EC	CALL NUMCHPIN,V)	MAM	44
	[= 4Cl	NAM.	45
	IF (V .EQ. 0) GC TO 200	NAM	46
	EO 19C 1 = 402,6CO	INAM	47
	T = 1	INAM -	
	IF (VARARY(I) .EC. V) GO TO 210 IF (VARARY(I) .EQ. 0) GO TO 200	INAM	
796	CONTINUE	INAM	
.,,	CALL ERROR(2)	NAM	_
200	VARARY(L) = V	NAM	52
	K = L	NAM	53
	RETURN	NAM	
	END	NAM	55
		NAM	56

SUBROLTINE SETUP(S,NCARD) IMPLICIT INTEGER*2 COUTIOO.10,41,PRICS(TSO) INTEGER*2 EQUITOO.10,41,PRICS(TSO) SET 3 INTEGER*2 COUTIOO.10,41,PRICS(TSO) SET 4 COMMON /MCC/ VARARY(620),NAMARY(400),EQU,PRILST COMMON /MCC/ VARARY(620),NAMARY(400),EQU,PRILST COMMON /MCC/ VARARY(620),NAMARY(400),EQU,PRILST COMMON /MCC/ VARARY(620),NAMARY(400),EQU,PRILST SET 6 COMMON /MCC/ VARARY(620),NAMARY(400),EQU,PRILST SET 7 TUAR = 603 SET 7 TUAR = 603 SET 10 10 IC 12 1.60 10 IC 11.60 10 IC 11.60 10 IC 11.60 10 IC 12.61 CO 12C 1 = 1.40 CO 12C 1 = 1.40 SET 12 CO 12C 1 = 1.40 SET 12 CO 12C 1 = 1.40 SET 16 CO 13C 1 = 1.100 SET 16 SET 12 TIFICULTIALITY SEC.0) GO TO 140 SET 16 CO 13C 1 = 1.100 SET 12 CO 13C 1 = 1.100 SET 12 SET 22 FIND INNERPOST SET OF PARENTHESES SET 24 CO 13C 1 = 1.80 SET 22 IF (S(1) SEC, -6) N. = APAR + 1 SET 22 IF (S(1) SEC, -7) NPAR = NPAR - 1 SET 22 IF (S(1) SEC, -7) NPAR = NPAR - 1 SET 22 IF (S(1) SEC, -7) NPAR = NPAR - 1 SET 36 SET 36 SET 36 SET 37 SET 36 SE			
INTEGER 2 EQUI(100,10,41, PRTLS(150) SET 3	SUBROUTINE SETUP(S,NCARD)		_
ILTEGER TEM TEM TEM	IMPLICIT INTEGER (A-C), REAL(Y-Z)		
COMPON MODIA VARRY (620) NAMARY (400) FEQUIPREST SET 5			_
COMMENS GEN'S ALBERT (SC) CIMPASSION'S SEN', TEMP (80), TEMP (80) TO AS = 1 TO AR = 603 CO 11C 1= 1, e0 CO 11C 1= 1, e0 CO 12C 1 = 1, 40 CO 13C 1 = 1, 100 CO 15C 1 =			-
CIMENSION 5180), TEM1(80), TEM2(80) SET 8 TVAR = 603 SET 9 TVAR = 603 SET 9 TO 11C 1= 1, 80 SET 10 SET 11 TO 12C 1 = 1, 40 SET 11 SET 11 SET 12 SET 16 SET 17 SET 18 SET 18 SET 19 SET 12 SE	COMPON ACEN ALBEITEC		
100 AS = 1			_
TVAR = 603 CO 11C I= 1,*e0 110 TEM2(1) = 0 CO 12C I = 1,*40 SET 12 12C TEM1(1,*) = 0 SET 15 C FINC LOCATION FOR NEXT EQUATION C SET 15 C FINC LOCATION FOR NEXT EQUATION SET 16 C SET 17 CO 130 I = 1,*100 ME = 1			
CO 11C = 1, eC			
1:0 1EM2[1] = 0			
CC 12C			
CO 12C 3 = 1,4 25ET 12 12C 1EM(1,J) = 0 25ET 14 C C FINC LOCATION FOR NEXT EQUATION SET 16 SET 16 SET 16 SET 16 SET 16 SET 17 SET 18 SET 18 SET 18 SET 18 SET 18 SET 19 SET 20 SET 22 SET 23 SET 22 SET 23 SET 22 SET 23 SET 24 SET 24 SET 24 SET 24 SET 24 SET 25			
12C TEM(1,J) = 0			
C FINC LOCATION FOR NEXT EQUATION C FINC LOCATION FOR NEXT EQUATION C SET 15 C C SET 17 DC 130 1 = 1,100 AE = 1 IFFECULI-1.1) .EQ.0) GO TC 140 1SET 18 IFFECULI-1.1) .EQ.0) GO TC 140 1SET 20 TOTAL ERROR(3) C SET 23 C FIND INNERMOST SET OF PARENTHESES SET 24 C SET 25 L40 APAR = C SET 25 L10 APAR = C SET 25 ENPAR = 0 SET 27 CO 15C J= 1.80 IF (S(J) .EQ6) N. = APAR + 1 SET 29 IF (S(J) .EQ7) NPAN = RPAR = 1 SET 29 IF (S(J) .EQ7) NPAN = RPAR = 1 SET 29 IF (HAPAR .LT. O) CALL ERROR(4) 150 IF (HAPAR .LT. NPAR) HAPAR = NPAR 150 IF (HAPAR .C. O) GO TO 310 CO 16C I = 1.80 15C TO 16C I = 1.80			14
C C SET 17 ISET 18 ISET 18 ISET 18 ISET 19 IF ISET 19 IF ISET 19 ISET 20 ISET 22 ISET 22 ISET 23 ISET 24 ISET 24 ISET 25 ISET 25 ISET 26 ISET 26 ISET 26 ISET 26 ISET 26 ISET 27			15
C C SET 17 ISET 18 ISET 18 ISET 18 ISET 19 IF ISET 19 IF ISET 19 ISET 20 ISET 22 ISET 22 ISET 23 ISET 24 ISET 24 ISET 25 ISET 25 ISET 26 ISET 26 ISET 26 ISET 26 ISET 26 ISET 27			16
NE = 1		SET	17
IFECULII.1.1 .EQ. 0 GO TG 140	OS 130 1 = 1,100	- 1SET	18
130 CONTINUE	AE = I	1SET	19
CALL ERROR(3) C FIND INNERMOST SET OF PARENTHESES C FIND INNERMOST SET OF PARENTHESES SET 23 C FIND INNERMOST SET OF PARENTHESES SET 25 140 MPAR = 0 FNPAR = 0 SET 26 FNPAR = 0 SET 26 FNPAR = 0 SET 27 CO 15C J = 1.80 ISET 28 IF (S(J) .EQ6) N. = MPAR + 1 ISET 29 IF (MPAR .LT. 0) CALL ERROR(4) ISET 31 ISO IF (HMPAR .LT. 0) CALL ERROR(4) ISET 32 IF (HMPAR .EQ. 0) GD TO 310 CO 16C I = 1.80 ISET 35 CO 17C J = 1.80 SET 36 CO 17C J = 1.80 ISET 35 K = J IF (S(J) .EQ6) NPAR = MPAR + 1 ISET 39 IF (S(J) .EQ6) NPAR = MPAR + 1 ISET 39 IF (S(J) .EQ6) NPAR = MPAR + 1 ISET 39 IF (S(J) .EQ6) NPAR = MPAR + 1 ISET 40 IF (MPAR .EQ. HMPAR) GO TO 180 ISET 41 TOT CONTINUE 100 S(K) = TVAR K = K + 1 SET 45 TVAR = TVAR + 1 SET 46 CO 15C J = 1.80 ISET 36 ISET 47 IF (S(K) .EQ7) GO TO 200 ISET 48 ISET 48 ISET 48 ISET 48 ISET 49 SIM) = 0 SET 51 200 S(K) = 0 SET 52 CALL RMYZER(S.N) SET 52 CALL RMYZER(S.N) SET 54	IF(EQL(I.1.1) .EQ.0) GO TC 140	ISET	20
C FIND INNERPOST SET OF PARENTHESES SET 23 C FIND INNERPOST SET OF PARENTHESES SET 24 C SET 25 140 APAR = 0 SET 25 ED 15C J= 1.80 SET 27 ED 15C J= 1.80 SET 27 ED 15C J= 1.80 SET 27 IF (S(J) .EQ. ~6) N. = APAR + 1 SET 29 IF (S(J) .EQ. ~7) APAR = NPAR = 1 SET 30 IF (APAR .LT. Q) CALL ERRER(4) SET 31 ISO IF (APAR .LT. NPAR) HAPAR = NPAR SET 31 ISO IF (APAR .LT. NPAR) HAPAR = NPAR SET 33 CD 16C I = 1.80 SET 33 CD 16C I = 1.80 SET 35 NPAR = C SET 36 CG 170 J = 1.80 SET 37 K = J SET 37 K = J SET 38 IF (S(J) .EQ. ~6) APAR = NPAR + 1 SET 37 IF (S(J) .EQ. ~6) APAR = NPAR + 1 SET 37 IF (S(J) .EQ. ~6) APAR = NPAR ~1 SET 37 IF (S(J) .EQ. ~6) APAR = NPAR ~1 SET 40 IF (APAR .EQ. HAPAR) GD TO 180 SET 41 ITO CONTINUE SET 42 INISVR = TVAR SET 42 INISVR = TVAR SET 42 INISVR = TVAR SET 45 IVAR = TVAR + 1 SET 46 INISVR = TVAR SET 47 IF (S(K) .EQ. ~7) GD TO 200 SET 50 ISC K = K * 1 200 S(K) = 0 SET 50 LSET 50 LSET 50 CALL RMVZER(S,N) SET 52 CALL RMVZER(S,N) SET 55 K = K * 1	130 CONTINUE	1SET	21
C FIND INHERMOST SET OF PARENTHESES C SET 25 140 APAR = 0 SET 26 HNPAR = 0 SET 27 CO 15C J = 1.80 ISET 27 IF (S(J) .EQ6) N. = APAR + 1 ISET 29 IF (S(J) .EQ7) NPAM = NPAR - 1 ISET 30 IF (INPAR .LT. 0) CALL ERRGR(4) ISET 31 150 IF (HNPAR .EQ. 0) GD TD 310 SET 33 CD 16C I = 1.80 ISET 35 NPAR = C SET 36 CO 170 J = 1.80 SET 36 IF (S(J) .EQ6) NPAR = NPAR + 1 ISET 37 IF (S(J) .EQ6) NPAR = NPAR + 1 ISET 37 IF (S(J) .EQ6) NPAR = NPAR + 1 ISET 38 IF (S(J) .EQ6) NPAR = NPAR + 1 ISET 37 IF (NPAR .EQ. HNPAR) GD TD 180 ISET 40 IF (NPAR .EQ. HNPAR) GD TD 180 ISET 40 K = K + 1 SET 42 THISVR = TVAR 1 SET 44 THISVR = TVAR 1 SET 45 IF (S(K) .EQ7) GD TD 200 ISET 48 IEMI(J) = S(K) SEQ7) GD TD 200 ISET 48 ISET 48 ISET 49 SIK) = 0 SIK) = 5 ISET 52 CALL RHVZER(S,N) SET 52 CALL RHVZER(S,N) SET 52 CALL RHVZER(S,N) SET 54	CALL ERROR(3)	SET	22
C 140 NPAR = 0 SET 25 HNPAR = 0 SET 27 E0 15C J= 1.80 ISET 26 IF (S(J) .EQ6) N. = NPAR + 1 ISET 29 IF (S(J) .EQ7) NPAR = NPAR = 1 ISET 30 IF (NPAR .LT. O) CALL ERRGR(4) ISET 31 150 IF (HNPAR .LT. NPAR) HNPAR = NPAR 1SET 32 IF (HNPAR .EQ. O) GO TO 310 SET 33 CO 16C I = 1.80 ISET 35 NPAR = C SET 36 CC 170 J = 1.80 SET 36 IF (S(J) .EQ6) NPAR = NPAR + 1 ISET 37 K = J ISET 37 K = J ISET 37 IF (S(J) .EQ6) NPAR = NPAR + 1 ISET 37 IF (S(J) .EQ7) NPAR = NPAR + 1 ISET 36 IF (NPAR .EQ. HNPAR) GO TO 180 ISET 40 IF (NPAR .EQ. HNPAR) GO TO 180 ISET 40 IF (NPAR .EQ. HNPAR) GO TO 200 ISET 47 IF (S(K) .EQ7) GO TO 200 ISET 49 S(K) = 0 SET 55 LEM I(J) = S(K) SET 50 ISET 50 ISET 50 CALL RHYZER(S,N) SET 53 K = K + 1			
140 NPAR = 0			_
FNPAR = 0	C		
TOTAL USE TO SET 480 IF (S(J) .EQ6) N. = NPAR + 1 IF (S(J) .EQ7) NPAK = NPAR + 1 IF (NPAR .LT. 0) CALL ERRGR(4) ISET 32 IF (HNPAR .LT. NPAR) HNPAR = NPAR ISET 32 IF (HMPAR .EQ. 0) GD TO 310 SET 33 CO 16C 1 = 1.80 ISET 35 NPAR = C CO 170 J = 1.80 IF (S(J) .EQ6) NPAR = NPAR + 1 IF (S(J) .EQ6) NPAR = NPAR + 1 IF (S(J) .EQ7) NPAR = NPAR - 1 IF (NPAR .EQ. HNPAR) GD TO 180 ISET 40 ITO TOTAL NUE INSET 40 INSET 41 THISVR = TVAR IVAR = TVAR + 1 CO 19C J = 1.80 ISET 45 ISET 46 ISET 47 ISET 48 ISET 48 ISET 49 SET 46 CO 19C J = 1.80 ISET 47 ISET 49 SET 48 ISET 49 SET 46 CO 19C J = 1.80 ISET 50 CALL RNYZER(S,N) SET 53 K = K + 1 SET 54 CALL RNYZER(S,N) SET 54 SET 54 SET 54			
IF (S(J) .EQ6) N. = NPAR + 1 IF (S(J) .EQ7) NPAK = NPAR - 1 IF (NPAR .LT. 0) CALL ERRGR(4) ISET 30 IF (NPAR .LT. NPAR) HNPAR = NPAR ISET 32 IF (HNPAR .LT. NPAR) HNPAR = NPAR CO 16C I = 1.80 ISET 34 160 TEM1(I) = C CG 170 J = 1.80 K = J IF (S(J) .EQ6) NPAR = NPAR + 1 IF (S(J) .EQ6) NPAR = NPAR + 1 IF (S(J) .EQ7) NPAR = NPAR - 1 IF (S(J) .EQNPAR) GO TO 180 ISET 40 IF (NPAR .EQ. HNPAR) GO TO 180 ISET 42 ITO CONTINUE 180 S(K) = TVAR K = K + 1 THISVR = TVAR + 1 CO 19C J = 1.80 ISET 45 IVAR = TVAR + 1 CO 19C J = 1.80 ISET 47 IF (S(K) .EQ7) GO TO 200 ISET 49 S(K) = 0 ISET 50 CALL RNVZER(S.N) SET 53 K = K + 1 SET 54 SET 54	FREAR - U		
IF (S(J) .EQ7) NPAN = NPAR = 1 IF (NPAR .LT. 0) CALL ERRCR(4) 156T 31 150 IF (HNPAR .LT. NPAR) HNPAR = NPAR 15ET 32 IF (HNPAR .EQ. 0) GD TO 310 CD 16C I = 1.80 15ET 34 160 TEM1(I) = C NPAR = C CG 170 J = 1.80 IF (S(J) .EQ6) NPAR = NPAR + 1 IF (S(J) .EQ6) NPAR = NPAR + 1 IF (S(J) .EQ7) NPAR = NPAR - 1 IF (NPAR .EQ. HNPAR) GO TO 180 ISET 42 180 S(K) = TVAR K = K + 1 THISVR = TVAR + 1 CD 15C J = 1.80 ISET 45 IFMILL = S(K) SET 46 CO 15C J = 1.80 ISET 47 IFMILL = S(K) SET 48 SET 48 IEM1(J) = S(K) SET 49 SET 50 CALL RMVZER(S,N) SET 53 K = K + 1 SET 54 SET 55 CALL RMVZER(S,N)			
IF (NPAR LT. NPAR) HNPAR = NPAR 150 IF (HNPAR LT. NPAR) HNPAR = NPAR IF (HNPAR LT. NPAR) HNPAR = NPAR IF (HNPAR LEQ. 0) GD TO 310 SET 33 CD 1&C I = 1.80 1SET 35 160 IEM1(I) = C NPAR = C CD 170 J = 1.80 K = J IF (S(J) .EQ. ~6) NPAR = NPAR + I IF (S(J) .EQ. ~6) NPAR = NPAR + I IF (S(J) .EQ. ~6) NPAR = NPAR - I IF (NPAR .EQ. HNPAR) GO TO 180 1SET 40 1SET 42 180 S(K) = TVAR K = K + I THISVR = TVAR TVAR = TVAR + I CD 19C J = 1.80 IEM1(J) = S(K) SET 48 IEM1(J) = S(K) SET 49 CALL RMVZER(S,N) SET 55 K = K + I SET 55 CALL RMVZER(S,N)	IF (5(J) .EQ6) N. = NPAR + 1		
150 IF (+NPAR *LT. NPAR) HNPAR = NPAR IF (+NPAR *EQ. 0) GD TO 310 CD 16C I = 1.80 15ET 34 160 TEM1(I) = C NPAR = C CC 170 J = 1.80 IF (S(J) *EQ. ~6) NPAR = NPAR + I IF (S(J) *EQ. ~6) NPAR = NPAR + I IF (S(J) *EQ. ~6) NPAR = NPAR ~ I IF (NPAR *EQ. HNPAR) GD TO 180 ISET 40 IF (NPAR *EQ. HNPAR) GD TO 180 ISET 42 180 S(K) = TVAR K = K + I THISVR = TVAR + I CD 15C J = 1.80 ISET 45 IVAR = TVAR + I CD 15C J = 1.80 ISET 47 IF (S(K) *EQ. ~7) GD TO 200 ISET 48 IEM1(J) = S(K) S(K) = 0 ISET 50 CALL RMVZER(S,N) SET 53 K = K + I			
TF (HMPAR .EQ. 0) GD TO 310			
CO 16C 1 = 1.80 1SET 34 160 TEM1(I) = C 1SET 35 NPAR = C SET 36 CG 170 J = 1.80 1SET 37 K = J 1SET 38 If (S(J) .606) NPAR = NPAR + I 1SET 39 If (S(J) .607) NPAR = NPAR - I 1SET 40 If (NPAR .60. HNPAR) GO TO 180 1SET 41 170 CGNTIAUE 1SET 42 180 S(K) = TVAR SET 43 K = K + I SET 44 THISVR = TVAR + I SET 45 TVAR = TVAR + I SET 46 CO 19C J = 1.60 1SET 47 TEM1(J) = S(K) 1SET 48 TEM1(J) = S(K) 1SET 48 SET 48 SET 48 SET 50 1SET 51 SET 52 CALL RMVZER(S,N) SET 54 SET 54 SET 54 SET 54 SET 54 SET 54 SET 55 SET 55 SET 55 SET 55 SET 55 SET 54 SET 55			
160 TEM1(1) = C NPAR = C CG 170 J = 1,80 K = J IF (S(J) .EQ6) NPAR = NPAR + 1 IF (S(J) .EQ7) NPAR = NPAR + 1 IF (NPAR .EQ. HNPAR) GO TO 180 15ET 40 170 CGNTIAUE 180 S(K) = TVAR K = K + 1 THISVR = TVAR + 1 CO 19C J = 1,80 TEM1(J) = S(K) SET 46 TEM1(J) = S(K) SIN = O CALL RMVZER(S,N) SET 54 SET 54 SET 54 SET 54 SET 55 CALL RMVZER(S,N)			
NPAR = C CG 170 J = 1,80 K = J IF (S(J) .EQ6) NPAR = NPAR + 1 IF (S(J) .EQ7) NPAR = NPAR + 1 IF (S(J) .EQ7) NPAR = NPAR - 1 IF (NPAR .EQ. HNPAR) GO TO 180 1SET 40 170 CONTINUE 180 S(K) = TVAR K = K + 1 THISVR = TVAR TVAR = TVAR + 1 CO 19C J = 1,80 IF (S(K) .EQ7) GO TO 200 ISET 47 IFH(J) = S(K) S(K) = 0 19C K = K + 1 200 S(K) = 0 CALL RHVZER(S,N) SET 54 SET 54 SET 54			
CG 170 J = 1,80 K = J IF (S(J) .EQ6) NPAR = NPAR + 1 IF (S(J) .EQ7) NPAR = NPAR + 1 IF (S(J) .EQ7) NPAR = NPAR - 1 IF (NPAR .EQ. HNPAR) GO TO 180 ISET 40 ISET 41 ITO CONTINUE 18EY 42 180 S(K) = TVAR K = K + 1 THISVR = TVAR IVAR = TVAR + 1 CO 19G J = 1,80 IF (S(K) .EQ7) GO TO 200 ISET 47 IF (S(K) .EQ7) GO TO 200 ISET 48 ISET 49 S(K) = 0 ISET 50 CALL RMVZER(S,N) SET 52 CALL SET 54			-
Temperature			
IF (S(J) .EQ6) NPAR = NPAR + 1 IF (S(J) .EQ7) NPAR = NPAR + 1 IF (S(J) .EQ7) NPAR = NPAR + 1 IF (S(J) .EQ7) NPAR = NPAR + 1 ISET 40 ISET 40 ISET 41 ISET 42 ISET 42 ISET 43 K = K + 1 SET 44 THISVR = TVAR IVAR = TVAR + 1 CO 19G J = 1.80 IF (S(K) .EQ7) GO TO 200 ISET 47 IF (S(K) .EQ7) GO TO 200 ISET 49 SIN = 0 ISET 50 CALL RMVZER(S,N) SET 52 CALL SET 54			-
IF (S(J) .EQ7) NPAR = NPAR - 1 IF (NPAR .EQ. HNPAR) GO TO 180 15ET 41 170 CONTINUE 180 S(K) = TVAR K = K + 1 THISVR = TVAR 100 190 J = 1,80 TF (S(K) .EQ7) GO TO 200 TEM1(J) = S(K) S(K) = 0 190 K = K + 1 200 S(K) = 0 CALL RMVZER(S,N) K = K + 1 SET 40 1SET 40 1SET 42 1SET 43 1SET 45 1SET 45 1SET 45 1SET 47 1SET 51 200 S(K) = 0 CALL RMVZER(S,N) SET 52			
IF (NPAR .EQ. HNPAR) GO TO 180 170 CONTINUE 180 S(K) = TVAR K = K + 1 THISVR = TVAR TO 190 J = 1,00 IF (S(K) .EQ7) GO TO 200 TEM1(J) = S(K) S(K) = 0 CALL RHVZER(S,N) 1SET 54 1SET 54 1SET 54 1SET 55 SET 54			
170 CONTIAUE 15ET 42 180 S(K) = TVAR SET 43			-
180 S(K) = TVAR K = K + 1 THISVR = TVAR TVAR = TVAR + 1 CO 19C J = 1,80 IF (S(K) .EQ7) GO TO 200 ISET 48 IEMI(J) = S(K) S(K) = 0 CALL RMVZER(S,N) K = K + 1 SET 43 SET 44 SET 44 ISET 45 SET 46 ISET 47 ISET 51 SET 52 SET 52			_
K = K + 1	- · · · · · · · · · · · · · · · · · · ·	SET	43
THISVR = TVAR	- · ·	SET	44
CO 19C J = 1,00 IF (S(K) .EQ7) GO TO 200 IEM1(J) = S(K) S(K) = 0 IGC K = K + 1 200 S(K) = 0 CALL RMVZER(S,N) K = K + 1 SET 54		SET	45
TF (S(K) .EQ7) GO TO 200 TEM1(J) = S(K) S(K) = 0 TGC K = K + 1 200 S(K) = 0 CALL RMVZER(S,N) K = K + 1 SET 54	TVAR = TVAR + 1	SET	46
IF (S(K) .EQ7) GO TO 200 IEM1(J) = S(K) S(K) = 0 ISET 49 SET 50 ISET 50 ISET 51 200 S(K) = 0 CALL RMVZER(S,N) K = K + 1 SET 54	CO 190 J = 1,80	ISET	47
\$\(\text{S(K)} = 0 \\ \text{19C K = K \cdot 1} \\ \text{200 S(K) = 0} \\ \text{CALL RMVZER(S,N)} \\ \text{K = K \cdot 1} \\ \text{SET 52} \\ \text{SET 53} \\ \text{K = K \cdot 1} \\ \text{SET 54}			-
19C K = K + 1 200 S(K) = 0 CALL RHVZER(S,N) K = K + 1 SET 52 SEY 53	TEMI(J) = S(K)		
200 S(K) = 0 SET 52 CALL RHVZER(S+N) SEY 53 K = K + 1 SET 54	$\xi(K) = 0$		
CALL RMVZER(S+N) SET 53 K = K + 1 SET 54			
K = K + 1 SET 54			
		:	
210 to 22c I= 1.K 1SET 55	· · · · · · · · · · · · · · · · · · ·		_
	210 EO 22C I= 1.K	12F1	7 2

是他们,我们是是一个人,他们是一个人,他们是一个人,他们是一个人,他们是一个人,他们们是一个人,他们们们是一个人,他们们是一个人,他们们们是一个人,他们们们是一个人,他们

IF (TEM1(I) .NE5 .AND. TEM1(I) .NE9) GQ TO 220	1SET 56
$TEM(NS_{\bullet}1) = TEM1(1)$	1SET 57
TEM(NS-2) = TEM1(I-1)	ISET 58
$TEM(NS_{\bullet}3) = TEM1(I+1)$	1SET 59
TEM(NS.4) = TVAR	ISET 60
7Em1(1-1) = TVAR	1SET 61
TEH1(1) = 0	1SET 62
Yeuralian - A	ISET 63
TVAR = TVAR + 1	1SET - 64
NS = NS + 1	1SET 65
220 CONTINUE	ISET 66
CALL RMVZERITEHI,K)	SET 67
K = K + 1	SET 68
1 CN - 0	SET 69
KS * 1	SET 70-
NTERM = 0	SET 71
10 . TENTALL . T AL MO 3	SET 72
00 270 I = KS-K	
IF ()EH1(1) .LE. 0 .AND. TEM1(1) .GE2) GO TO 230	13E1 73 1SET 74
TEN = TEN + J	15ET 75
JEWS(TEW) = JEWISS)	1SET - 76 -
	15ET 77
IF (LCY .EC. 1) ST = 1	
GO TC 270 230 NTERM = NTERN + I	
IF (LEN .LE. 1) GO TO 260	1SET 79 1SET 80
KJ = [-]	15ET 81
CO 240 JK = ST.KJ 240 TEM1(JK) = 0	2SET 82 2SET 83
TEMI (I-1) = TVAR	1SET 84
CALL TERMITEM, TEPZ, NS, LEN, TVAR	15ET 65
EQ 25C IZ = 1.60	2SET 86
250 TEM2(12) = C	2SET 87
260 LEN = 0	1SET - 88
270 CONTINUE	15E1 89
CALL RHVZER(TEM1.K)	SET SC
CALL GATHER (TEM, TEM), NTERM, THI SUR, NS)	SET 9I
LE LANDE OF DIFO TO 140	
IF (FAPAR .GT. 0) GO TO 140	SET 92
280 EQU(NE,1,1) = -1	SET 93 SET 94
EQUINE, 1,4) = NCARD	
K = 1	SET 95 SET 96
IF (ECU(NE, 2, 1) . EQ6) K • K + 1 NS = NS -1	SET-97
v2 = v2 -1	15ET 58
CO 3CC I = 1.NS	15ET 99
K = K + 1 E0 296 J = 1.4	
10 470 3 = 199	2SET 100
290 EQU(NE,K,J) = TEP(1,J)	2SET 101
IF (1 .EQ. MS) GO TO 300	1SEY 102
IF (K .LT. 10) GC TO 300	1SET 103
K = 1	1SET 104
EQU(HE,1,3) = 10	1SEI 1C5
NE = NE + 1	1SET 106
EQU(KE,1,1) = -2	1SET 107
EQUINE, 1.4) = NCARD	1SET 108
300 CONTINUE	1SET 105
EQL(NE,1.3) = K	SET 110

RETURN	SET 111
310 IF (S(2) .NEB) CALL ERROR(3)	
THISVR = 5/1) CO 320 1 = 3,80	SET 113 1SET 114
320 TEM1(1-2) = S(1)	1SET 115
TEM1(79) * 0	SET 116
TZM1(80) = 0 CALL RMVZER(TEM1.K)	SET 117 SET 118
(0 10 210	SET 119
END	SET 120
	

SUBROLTINE RMVZER (N1.)	RMV 1 RMV 2
CIMENSION N1(80)	RHV 3
K = C CO 1CC I = 1.80	1RHV 4
IF (N1(1) .EQ. 0) GO TO 100	1RMV 5
K = K + 1	1RPV 6
N1(K) = N1(I)	IRMY 7
IF (K .LT. I) N1(1) = 0	IRPV 8
100 CONTINUE	IRMV 9
h = K	R#V 10
RETURN	RMV 11
ENC	RPV 12

SUBROLTINE CERMET, TI.N. L. NY)	TRM 3	1
INTEGER*2 1(40,4)		Š
INTEGER T1(80)		3-
AS = NV		4
KV = NV + 1		5
T(N,1) = T1(2) T(N,2) = T1(1)		6
I(N,3) = I(())		7
1(N,4) = NS		Ē_
1 = 4	TRM	
100 A = R + 1	îr: 10 Trm 1)	
IF (1 GT. L) RETURN	— TRM 11	
I(N,1) = I1(I)	TRM 13	
I(N, 2) = NS	TRM 14	
7(N,3) = T1(1+1)	TRM 15	
T(N.4) = AS	TRM 16	
1 = 1 + 2	TRM 17	
END	TRM 18	
END	TRM 19	3
and the second of the second o		
Martin a series and a series and the series and the series and the series and the series are the series and the series are the series and the series are the		
and the second section of the section of the second section of the section of the second section of the		
The state of the second st		-
		_
en e		_
		-
		
		-

SUBROUTINE GATHER (T.TI.NT.NV.N)	GTR 1
INTEGER+2 T(40,4)	GTR 2
IF INT .EQ. 1 .AND. N .GT. 11 GD TO 130	GTR 3
1 = 1	GTR 4
T(H,1) =-10	GTR 5
$I(N_{\tau}2) = 1$	GTR 6 GTR 7
IF (TI(1) .GT. 0) GO TO 100	GTR 7 GTR 8
IF(T1(1) .EQ2) T(N,2) = -1	GTR 9
I = I < 1	GTR 1C
100 T(N,3) = T1(1)	_
1 - 1 - 1	GTR 12
I(N,4) = 6C1	GTR 13
11C K = N € 1	GTR 14
te (111) .NE. 0) GU 10 120	CTR 15
T(N-1.6; = NV Retlan	GTR 16
720 7(N.1) = T1(1)	GTR 17
TIN, 2; = 601	GTR 18
I(N.3) = I(i) + ()	GTR 19
1(N-4) = 6C1	GTR 20 GTR 21
1 = 1 + 2	GTR 22
GC TC 110	GTR 23
130 T(N-1,47 = NV	GTR 24
RETURN	GTR 25
END	GTR 26
	_

SUBROUTINE CATAIN	DIM	1
IMPLICIT INTEGER (A-U), REAL(V-Z)	DIN	ž
INTEGER+2 EQUITOG. 10.4) . PRILST(50)	OIN-	<u>~-</u> 5−
COMMON /MOD/ VARARY(620), MAMARY(400), EQU. PRTLST	CIN	4
COMMON /GEN/ ALBET(SC)	DIN	5
CIMENSION CARD(80) , MAN(16) , NUM(16)	DIN	- ¿
KCDS = Q	DIM	7
C	DIN	ē
C READ DATA CARD		- ğ.
C	DIM	10
100 READ(1.110.END=240)CARD	DIN	11
TIC FORMAT (ECAL)	DI# -	
NCDS = NCDS + 1	DIN	13
1F (NCDS .EQ. 1) WRITE (3,120)	DIN	14
	CIE	1
C PENOVE COPPENTS AND BLANKS	DIN	1-
C PENOVE COPPENTS AND BLANKS	DIM	17
	DIN	18
CO 13C I =1.60	icia	15
IF (CAROLL) .EQ. ALBET (501) GC TO 140	1014	20
IF (CARDII) .EQ. ALBET (13)) CARDII - 0	loin	21
130 AS = I+1	IDIN	Si
60 10 160	CIN	23
140 CO 150 I = N5,85	101#	24"
150 CARD(1) = C	101*	25
160 CALL RMYZER(CARD.NS)	DIM	26
	CIN	27
C CHECK FOR TABLE	DIN	28
C	DIN	29
IF (CAROII).NETALBET(30)-CATCARDIZITHE.ACBET(49)) GO TO 170	CIN	- 30
IF (CARC(3).NE.ALBET(48).CR.CARD(4).NE.ALBET(38)) GC TO 170	DIN	31
IF (CARD(5).NE.ALBET(45)) GD TO 170	DIK	32
CALL TABLINICARD)	- DIN	33
GO TO 1CO	EIN	34
170 CONTINUE	DIN	35
	DIN .	
C CHECK FOR COPHA IN LAST POSITION	DIN	37
C	EIN	38
IF (CARDINE) .EQ. AUSET(31) AS . AS-1		
IF INS .EQ. 0) GC TG 240	DIN	40
1F (#5.LT.80) CARU(NS+1) = 0	CIN	41
T. T. Sacreton Caracteristics	-	_
C FIND THE NUMBER OF DATA ITEMS	DIN	-
C	DIN	43
AD :	DIN	44
· · ·	EIN.	_
to let 1 =1.NS	įDix	46
180 [F (CARD(1) .EQ. ALBET(3)) NO = NO + 1	idin	47
	DIN	48
C FIND VARIABLE MAPE AND DATA THEN STORE	CIN	45
<u>C</u>	DIN	50
EO 234 JK =1,NO	IDIN	_21.
CG 150 I= 1,5	20 IN	52
NAMET) = C	201N	53
K = 1.+1	ZOIN	- 54
IF (CARB(I) .EQ. ALBET(I)) GO TO 200	201N	55

NAM(I) = CARD(I)	20 I N	56
190 CARD(I) = 0	2DIN	57
NAM(6) = 0	10IN	58
IF (CARD(6) .NE. ALBET(1))CALL ERROR (6)	1CIN	59
200 KS = K + 15	1DIN	60
CARO(K-1) = 0	loin	61
J = 0	1DIN	62
	20 I N	63
	2DIN	
J = J + 1	2D I N	65
NUH(J) = 0	20 IN	66
KE = [201N-	
IF (CARC(I; .EQ. U .OR. CARC(I) .EQ. ALBET(3)) GO YO 22C		
NUM(J) = CARD(I)	201 N	68
210 CARD(1) = 0	20 IN	- 39 - 30
CALL ERROR(T)	IC IN	
220 CARC(KE) = C	1DIN	71
CALL NAMCHP(NAM-NAME.NC)	1DIN	72
CALE NUMCHP(NUH,X)	1DIN	
CALL STORE (NAME. X.NC)	1C IN	74
230 CALL RMVZER(CARD+NS)	IUIN	75
GO TO 100	DIN	76
240 RETURN	DIN	77
END	DIN	78_
	•	

	SUBROLTINE NUMCHP (NUM, X)	NUC	
	IMPLICIT INTEGER (A-U) -REAL (V-Z)	NUC	_
	INTEGER+2 EQU(100,10,4), PRTLST(50)	NUC	
	COMPON /MOD/ VARARY1620], NAMARY(<00), EQU, PRTLST	NUC	
	COMMON /GEN/ ALBET(50) DIMENSION NUM(16)	NUC_	_
	Dimension woulded	NUC	
	EIND OUT TE CIDCT PHADACTED TO A	NUC	
	FIND OUT IF FIRST CHARACTER IS A	NUC-	_
	scu = >	NUC	
	SGN = 1 !` (NUM(1) .NE. ALBET(5)) GO TO 100	NUC	
	Sun = -1	NUC-	-
	NUM(1) = -264224114	NUC	
	HUMET TO ECTEE 134	NUC	
	FIND DECIMAL SOLAT, EXPONENT, AND CONVERT CHARACTERS TO INVEGERS		_
	THE SCOTTAGE TOTALITY AND SOUTCH SHARROTTERS AS INCREME	NUC	
100	NC=-1	NUC	
	KE=0	- NUC -	_
	CO 120 I = 1,16	INUC	
	1F (NLM(1) .EQ. C) GO TO 130	INUC	
	IF (NUMIT) GT. C .OR. NUMIT) .EQ.ALBET (451) GO TO IIG	INUC	-
	AUH([]=(NUP([) + 264224704)/16777216	INUC	
	GO TO 120	INUC	
TTO	TF (NLM: 17 .EQ. ALBET(12)) NC=!	- INLC	-
•••	IF (NLM(I) .EQ. ALBET(45)) NE = E	INUC	
120	n=[INUC	
130	IF (ND .EQ. =1 .AND. NE .EQ. 0) ND = N + 1	NUC	
	IF (NC .EQ1 .AND. NE .GT. O) ND = NE	NUC	
	NP = ND - 1	NUC	
	IF INE .EO. DT GO TO 140	NUC	
	IF (NE .EQ. N) NP = NE-1	NUC	
	NUM(NE) = C	NUC	
	IF (NUM(NE+1) :GT.10 INE = NE+1	" NUC	•
	AEX = NUM(NE+1)	NUC	
	IF (N .EQ. NE+2) NEX = NEX+10 + NUM(NE+2)	NUC	
	IF (NEMINE) .EQ. ALBET(5)) NEX = -NEX	fnc.	
	AP = NP + NEX	NUC	
	$\kappa = \kappa = -1$	NUC	
T40	_X=0	" 'NUC'	
	$00\ 150\ i = 1_9N$	INUC	
	(f (1 .EQ. ND) GC TO 150	INUC	
	NP = NP-1	INUC"	_
	Y = NLM(I'	INUC	
	XNP = NP	INUC	
	X = X'+ Y+(10.0**XNP)	- INUC	
	IF (NP .EU. 0) X = AINT(X+.1)	INUC	
150	CONTINUE	INLC	_
	X=X+SGN	NUC"	
	CO 160 I = 1,16	INUC	
160	NUM(I) = C	1KUC	
	RETURN	NUC.	
	ENC	NUC	

	SUBROUTINE NAMCHP (NAM, NAME, NC)	NAC	
	IMPLICIT INTEGER (A-U), REAL(V-Z)	NAC	
	INTEGER*2 EQU(10C,10,4),PRTLST(50)	NAC	
	COMMON /MOD/ VARARY(620), NAMARY(400), EQU, PRTLST	NAC	•
	COMMON /GEN/ ALBET(5C) CIMERSION NAM(16)	NACNAC_	
	P16 * 16**6	NAC	
	100 - 1000	NAC	
	FIND NAME LENGTH	NAC NAC	
		NAC	1
	CO 1CO 1=1.5	INAC	1
	TF (NAM(I) .EQ. C) GO TO 115	INAC	1
100	Nn=1	INAC	1
		NAC_	1
	CHECK FOR \$		1
		NAC	1
110	AC=0	NAC	1
	TF(NAM(T) :EQ: ALBETTB)) NC=T	NAC -	1
	IF (NN-NC .LE. 4) GO TO 120 CALL ERROR(23)	NAC NAC	2
	1N = NC + 4	NAC-	2
	AN = AN - AC	NAC	ž
		NAC	2
	PUT BLANKS IN NAPE		_
		NAC	2
	IF (NN .EQ. 4) NAME = NAM(1+NC) - 4210752	NAC	2
	"IF (NN TLET 3) NAME = 1073741824"	NAC	Z
	IF (NN .LE. 2) NAME = NAME + 4194304	NAC	2
	IF (NK .GT. 1) 6C TO 130	NAC	2
	"NAME = NAME + 16384" + "NAM(1+NC)/P16 + 255	NAC	_
	CO TO 15C	NAC	3
	FILL'IN CHARACTERS	NAC-	3
	FILL IN CHARACIERS	.NAC	3
	NS=1+NC	NAC	3
	T. F=NN+NC	NAC-	- 3
	IF (NN .EQ. 4) NS=NS+1	NAC	3
	CO 14C I= NS. NY	1NAC	3
	"NAM(I) = NAM(I) 8916"+ 255	INAC	-3
140	hame = name + nam(1)+16++(2+(NT-1))	INAC	4
	CO 160 1 = 1.16	INAC	4
-16C	NAM(I) # C	INAC	
	RETURN	NAC	4
	END CONTRACTOR CONTRAC	NAC	4

是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人, 一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,

是一个时间,我们是我们,我们是我们的,我们是我们的,我们是我们的,我们是我们的,我们是我们的,我们是我们的,我们是我们的,我们们是我们的,我们们们的,我们们们的

INTEGER®2 EQU(100,10,4),PRT(3T(50) COMMON /MOD/ VARARY(620),ARPARY(600),EQU,PRTLST COPMON /COPMN/ STFCOM,STTREG,STPREG,COM(200) STR PRINT VARIABLE AND VALUE STR BRIYE (3,100) N,X STR 100 FORMAT (5×,A4,** = *,1PE13.6) IF (NC .E0, 1) MRITE (3,110) STR 1 CHECK TO SEE IF NAME IS IN COMMON AREA STR 1 CHECK TO SEE IF NAME IS IN COMMON AREA STR 1 IF (N .EQ. NAMARY(I)) GO TO 190 STR 2 BRITE (3,140) STR 2 BRITE (3,140) STR 2 FRETURN STR 2 ISTR 2 1STR 2 1STR 2 1STR 2 1STR 2 1STR 3 STR 2 1STR 1 1STR 2 BRITE (3,140) STR 2 FRETURN STR 2 IF (N .EQ. NAMARY(I)) GO TO 190 STR 2 IF (NAMARY(I) .EQ. O) GO TO 170 STR 2 1STR 3 STR 3 RETURN STR 3 STR 3 PRIURN STR 3	INTEGER-2 EQUILOC, 10, 41, PRT(ST(50) COMMON /MOD/ VARAY 16201, NAMARY 1600). EQU., PRTLST STR COMMON /MOD/ VARAY 16201, NAMARY 1600). EQU., PRTLST STR STR PRINT VARIABLE AND VALUE STR		SUBROUTINE STORE (N. X. NC)	STR	3
COMMON / GOMMN/ STYCOM, STYREG, STPREG, COM(200) PRINT VARIABLE AND VALUE STR BRIYE 13,100) N.X 100 FORMAT (5X,A4,* * *,1PE13.6) IF (NC .EQ. 1) MRITE (3,110) STR 1 CHECK TO SEE IF NAME IS IN COMMON AREA STR 1 DO 120 I = 1,STPCOM K = 1 IF (N .EQ. NAMARY(I)) GO TO 190 100 CONTINUE 130 IF (NC .NE. 1) GC TO 150 STR 2 WRITE (3,140) 151R 2 RETURN STR 2 IF (N .EQ. NAMARY(I)) GO TO 190 151R 2 151R 2 151R 1 151R 2 151R 2 151R 1 151R 2 151R 2 151R 1 151R 2 151R 2 151R 1 151R 2 151R 1 151R 2 151R 2 151R 1 151R 2 151R 1 151R 2 151R 2 151R 1 151R 2 151R 2 151R 1 151R 2 151R 1 151R 2 151R 2 151R 3 151R	COMMON / COMMN/ STYCOM, STREG, STPREG, COM(200) STR PRINT VARIABLE AND VALUE STR INTERITY (3,100) N.X* STR STR STR STR STR STR STR ST		IMPLICIT INTEGER (A-U) , REAL (V-Z)		
COMMON / GOMMN/ STYCOM, STYREG, STPREG, COM(200) PRINT VARIABLE AND VALUE STR BRIYE 13,100) N.X 100 FORMAT (5X,A4,* * *,1PE13.6) IF (NC .EQ. 1) MRITE (3,110) STR 1 CHECK TO SEE IF NAME IS IN COMMON AREA STR 1 DO 120 I = 1,STPCOM K = 1 IF (N .EQ. NAMARY(I)) GO TO 190 100 CONTINUE 130 IF (NC .NE. 1) GC TO 150 STR 2 WRITE (3,140) 151R 2 RETURN STR 2 IF (N .EQ. NAMARY(I)) GO TO 190 151R 2 151R 2 151R 1 151R 2 151R 2 151R 1 151R 2 151R 2 151R 1 151R 2 151R 2 151R 1 151R 2 151R 1 151R 2 151R 2 151R 1 151R 2 151R 1 151R 2 151R 2 151R 1 151R 2 151R 2 151R 1 151R 2 151R 1 151R 2 151R 2 151R 3 151R	COMMON / COMMN/ STYCOM, STREG, STPREG, COM(200) STR PRINT VARIABLE AND VALUE STR INTERITY (3,100) N.X* STR STR STR STR STR STR STR ST		INTEGER®Z EQU(100,10,4),PRTLST(50)	-	
PRINT VARIABLE AND VALUE STR STR BRITE 13,1CO) N.X 100 FORMAT (5X,A4,* = *,1PE13.6) IF (NC .EQ. 1) WRITE (3,110) STR 1 CHECK TO SEE IF NAME IS IN COMMON AREA STR 1 OU 120 I = 1,STPCOM K = 1 IF (N .EQ. NAMARY(I)) GO TO 190 120 CONTINUE 130 IF (NC .NE. 1) GC TO 150 STR 2 WRITE (3,140) 140 FORMAT (**,28X,*THIS VARIABLE IS NOT IN COMMON. CATA IGNOREC.*) STR 2 IF (N .EQ. NAMARY(I)) GO TO 190 1 STR 2 IF (N .EQ. NAMARY(I)) GO TO 190 1 STR 2 15T CO 160 I = STYREG,400 L = 1 IF (N .EQ. NAMARY(I)) GO TO 190 1 STR 2 16 (NAMARY(I) .EQ. O) GO TO 170 1 STR 2 16 FORMAT (**,28X,*THIS VARIABLE IS NOT USEG. DAYA IGNOREC.*) STR 2 18 FORMAT (**,28X,*THIS VARIABLE IS NOT USEG. DAYA IGNOREC.*) STR 3 RETURN 190 IF !VARARY(K) .EQ. 123.459E-15) GO TO 210 STR 3 FRITE 13,2CO) VARARY(K) 2CC FORMAT (**,28X,*THIS VARIABLE WAS DEFINED AS *,1PE13.6) STR 3 RETURN STR 3 210 VARARY(K) = X XRIABLE WAS DEFINED AS *,1PE13.6) STR 3 RETURN STR 3 RETURN STR 3 STR 3	PRINT VARIABLE AND VALUE STR STR BRIYE 13,100) N.X 100 FORMAT 15X,A4.,* = *,1PE13.6) IF (NC .EQ. 1) WRITE (3,110) STR 1 CHECK TO SEE IF NAME IS IN COMMON AREA STR 1 CHECK TO SEE IF NAME IS IN COMMON AREA STR 1 OO 120 I = 1,STPCOM K = 1 IF (N .EQ. NAMARY(I)) GU TO 190 1STR 1 120 CONTINUE 130 IF (NC .NE. 1) GC TO 150 STR 2 NRITE (3,140) 1A0 FORMAT (***,28X,*THIS VARIABLE IS NOT IN COMMON. CATA IGNOREC.*) STR 2 RETURN 15 TO 160 I = STYREG,400 L = 1 IF (N .EQ. NAMARY(I)) GO TO 190 1STR 2 16 (N .EQ. NAMARY(I)) GO TO 190 1STR 2 16 (N .EQ. NAMARY(I)) GO TO 190 1STR 2 16 (N .EQ. NAMARY(I)) GO TO 190 1STR 2 16 (N .EQ. NAMARY(I)) GO TO 190 1STR 2 16 (N .EQ. NAMARY(I)) GO TO 190 1STR 2 16 (N .EQ. NAMARY(I)) GO TO 190 1STR 2 16 (N .EQ. NAMARY(I)) GO TO 190 1STR 2 16 (N .EQ. NAMARY(I)) GO TO 190 1STR 2 16 (N .EQ. NAMARY(I)) GO TO 190 1STR 2 16 (N .EQ. NAMARY(I)) GO TO 190 1STR 3 STR 3 RETURN STR 3 STR 3 RETURN STR 3		CUMPUR /POUT WARRY (GZU) #APRAT (TOU) #EQU#PK: 121		4
STR	STR		COPPON /COPPN/ SIFCOM, SITREG, SIPREG, COM(200)		
STR	STR	•	PRINT MARCANA F. SAM MARANA	-	•
## ## ## ## ## ## ## ## ## ## ## ## ##	## ## ## ## ## ## ## ## ## ## ## ## ##	•	butus Auxiable and Autos		1
100 FORMAT (5x,44,* = *,1PE13.6) IF (NC .EQ. 1) MRITE (3,110) STR 1 110 FORMAT (** **)* CHECK TO SEE IF NAME IS IN COMMON AREA STR 1 OO 120 I = 1,STPCOM K = I IF (N .EQ. NAMARY(I)) GO TO 190 1STR 1 120 CONTINUE 130 IF (NC .NE. 1) GC TO 150 STR 2 NRITE (3,140) 140 FORMAT (***,28x,*THIS VARIABLE IS NOT IN COMMON. CATA IGNOREC.*) STR 2 RETURN 150 CO 160 I = STYREG,400 F = I IF (N .EQ. NAMARY(I)) GO TO 190 1STR 2 1STR 3 1STR	100 FORMAT (5x,44,* = *,1PE13.6) STR IF (NC .EQ. 1) MRITE (3,110) STR ITO FORMAT (** * *)* STR CHECK TO SEE IF NAME IS IN COMMON AREA STR CHECK TO SEE IF NAME IS IN COMMON AREA STR DO 120 I = 1,STPCOM 1STR IF (N .EQ. NAMARY(I)* GO TO 190 1STR 120 CONTINUE 1STR 130 IF (NC .NE. 1) GC TO 150 STR WRITE (3,140) STR 140 FORMAT (***,28X,*THIS VARIABLE IS NOT IN COMMON. CATA IGNOREC.*) STR RETURN STR IF (N .EQ. NAMARY(I)* GO TO 190 1STR IF (N .EQ. NAMARY(I)* GO TO 190 1STR 160 CONTINUE 1STR 160 CONTINUE 1STR 160 CONTINUE 1STR 170 KRITE (3,180) STR 180 IF (VARARY(K) .EC. 123.459E-15) GO TO 210 STR 190 IF (VARARY(K) .EC. 123.459E-15) GO TO 210 STR 200 VARARY(K) = X STR RETURN STR 210 VARARY(K) = X STR RETURN STR 210 VARARY(K) = X STR RETURN STR STR STR STR STR STR STR STR STR STR STR STR STR STR STR STR STR STR STR STR STR STR STR STR STR STR STR STR STR STR STR	·			
IF (NC .EQ. 1) MRITE (3,110) TIO FORMAT (** **) CHECK TO SEE IF NAME IS IN COMMON AREA CHECK TO SEE IF NAME IS IN COMMON AREA STR 1 OO 120 I = 1,STPCOM K = I IF (N .EQ. NAMARY(I)) GO TO 190 1STR 1 120 CONTINUE 130 IF (NC .NE. 1) GC TO 150 STR 2 NRITE (3,140) 140 FORMAT (**,20%,*THIS VARIABLE IS NOT IN COMMON. CATA IGNOREC.*) STR 2 RETURN 150 EO 160 I = STYREG,400 F = I IF (N .EQ. NAMARY(I)) GO TO 190 1STR 2 1F (NAMARY(I) .EQ. 0) GO TO 170 1STR 2 160 CONTINUE 170 NRITE (3,180) 18TR 2 18TR 2 18TR 3 190 IF (VARARY(K) .EC. 123,459E-15) GO TO 210 STR 3 2CC FORMAT (**,28%,*THIS VARIABLE MAS DEFINED AS *.1PEI3.6) STR 3 2CC FORMAT (**,28%,*THIS VARIABLE MAS DEFINED AS *.1PEI3.6) STR 3 2CU VARARY(K) = X STR 3 RETURN STR 3	IF (NC .EQ. 1) MRITE (3,110) ITO FORMAT (** **)* CHECK TO SEE IF NAME IS IN COMMON AREA CHECK TO SEE IF NAME IS IN COMMON AREA STR 1 DO 120 I = 1,STPCOM K = 1 IF (N .EQ. NAMARY(I)*) GO TO 190 1STR 1 120 CONTINUE 130 IF (NC .NE. 1) GC TO 150 STR 2 NRITE (3,140)* 140 FORMAT (**,28%,*THIS VARIABLE IS NOT IN COMMON. CATA IGNOREC.*) STR 2 RETLRN 150 EO 160 I = STTREG,400 ISTR 2 IF (N .EQ. NAMARY(I)*) GO TO 190 1STR 2 1F (NAMARY(I)*.EQ. 0)* GO TO 170 1STR 2 160 CONTINUE 170 BRITE (3,180) 180 FORMAT (**,28%,*THIS VARIABLE IS NOT USES, DAYA IGNOREC.*) STR 2 **RETURN 190 IF !VARARY(K) .EC. 123.459E-15) GO TO 210 STR 2 2CC FORMAT (**,28%,*THIS VARIABLE MAS DEFINED AS *.1PEI3.6) STR 2 2CC FORMAT (**,28%,*THIS VARIABLE MAS DEFINED AS *.1PEI3.6) STR 2 **RETURN STR 3 **STR	1.50	BRITE 13,1001 N.A		
CHECK TO SEE IF NAME IS IN COMMON AREA	CHECK TO SEE IF NAME IS IN COMMON AREA	100			
CHECK TO SEE IF NAME IS IN COMMON AREA CHECK TO SEE IF NAME IS IN COMMON AREA STR 1 DO 120 I = 1,STPCOM K = I IF (N . EQ. NAMARY(I)) GO TO 190 1STR 1 120 CONTINUE 130 IF (NC .NE. 1) GC TO 150 STR 2 NRITE (3,140) 140 FORMAT (**,28%,*THIS VARIABLE IS NOT IN COMMON. CATA IGNOREC.*) STR 2 RETURN 150 CO 160 I = STYREG.400 15TR 2 15 IF (N .EQ. NAMARY(I)) GO TO 190 15TR 2 16 (NAMARY(I) .EQ. O) GO TO 170 15TR 2 16 FORMAT (**,28%,*THIS VARIABLE IS NOT USES. DAYA IGNOREC.*) STR 3 RETURN 190 IF !VARARY(K) .EC. 123,459E-15) GO TO 210 STR 3 200 VARARY(K) = X RETURN STR 3 210 VARARY(K) = X STR 3 STR 3	CHECK TO SEE IF NAME IS IN COMMON AREA CHECK TO SEE IF NAME IS IN COMMON AREA STR 1 DO 120 I = 1,STPCOM K = I IF (N .EQ. NAMARY(I)) GO TO 150 1STR 1 120 CONTINUE 130 IF (NC .NE. 1) GC TO 150 STR 2 BRITE (3,140) 140 FORMAT (**,28%,*THIS VARIABLE IS NOT IN COMMON. CATA IGNOREC.*) STR 2 RETURN 150 CO 160 I = STYREG,400 15TR 2 IF (N .EQ. NAMARY(I)) GO TO 190 15TR 2 16 (NAMARY(I) .EQ. O) GO TO 170 15TR 2 160 CONTINUE 170 BRITE (3,180) 186 FORMAT (**,28%,*THIS VARIABLE IS NOT USES, DAYA IGNOREC.*) STR 2 20C FORMAT (**,28%,*THIS VARIABLE WAS DEFIGION AS *,1PE13.6) STR 2 210 VARARY(K) = X RETURN STR 3 STR				
CHECK TO SEE IF NAME IS IN COMMON AREA OD 120 I = 1,STPCOM K = 1 IF (N -EQ. NAMARY(I)) GO TO 190 120 CONTINUE 130 IF (NC .NE. 1) GC TO 150 STR 2 brite (3,140) 140 FORMAT (*+*,20x,*THIS VARIABLE IS NOT IN COMMON. CATA IGNOREC.*) THE STR 2 RETURN IF (N .EQ. NAMARY(I)) GO TO 190 15TR 2 IF (N .EQ. NAMARY(I)) GO TO 190 15TR 2 16 CONTINUE 17 (NAMARY(I) .EQ. 0) GO TO 170 15TR 2 16 FORMAT (**,20x,*THIS VARIABLE IS NOT USEO. DATA IGNOREC.*) STR 2 RETURN 190 IF !VARARY(K) .EQ. 123.459E-15) GO TO 210 STR 3 2CC FORMAT (**,20x,*THIS VARIABLE MAS DEFIGED AS *.1PE13.6) STR 3 2CC FORMAT (**,20x,*THIS VARIABLE MAS DEFIGED AS *.1PE13.6) STR 3 RETURN STR 3 STR 3	CHECK TO SEE IF NAME IS IN COMMON AREA OD 120 I = 1,STPCOM K = I IF (N -EQ. NAMARY(I)) GO TO 190 120 CONTINUE 130 IF (NC -NE. 1) GC TO 150 STR 2 NRITE (3,140) 140 FORMAT (*+*,20X,*THIS VARIABLE IS NOT IN COMMON. CATA IGNOREC.*) STR 2 RETLRN 150 EO 160 I = STYREG,400 STR 2 IF (N .EQ. NAMARY(I)) GO TO 190 STR 2 IF (N AMARY(I) -EQ. 0) GO TO 170 151R 2 160 CONTINUE 170 NRITE (3,180) 185 FORMAT (***,20X,*THIS VARIABLE IS NOT USED. DAYA IGNOREC.*) STR 2 RETURN 190 IF (VARARY(K) -EQ. 123.459E-15) GO TO 210 STR 2 2CC FORMAT (***,20X,*THIS VARIABLE WAS DEFINED AS *.1PE13.6) STR 2 2CC FORMAT (***,20X,*THIS VARIABLE WAS DEFINED AS *.1PE13.6) STR 3 S		FURHAT (** 3*)		
DO 120 I = 1,STPCOM	DO 120 = 1,5TPCOM	:	CUPCU TO CPP 15 WARE 10 TH COMMON ARCA		
DO 120 I = 1,STPCOM	DO 120 = 1,5TPCOM		CHECK IU SEE IF NAME IS IN CUMPUN AREA	21K	
R = 1	N = 1	•		218	. 43
15	15				
120 CONTINUE 1 STR 2	120 CONTINUE		and the same of th		
130 IF (NC NE 1) GC TO 150 STR 2	130 IF (NC NE. 1) GC TO 150 STR 2				
#RITE (3,140) 140 FORMAT (***,20X,*THIS VARIABLE IS NOT IN COMMON. CATA IGNOREC.*) RETURN 150 CO 160 I = STYREG,400	## ## ## ## ## ## ## ## ## ## ## ## ##		to the his ti on the tea		1
## 140 FORMAT (*+*,20x,*THIS VARIABLE IS NOT IN COMMON. CATA IGNOREC.*) STR 2 ## 2	######################################	130			
RETURN STR 2	RETLRN 150 CO 160 I = STYREG,400 STR	• • •	WRITE (3,140)		
150 EO 160 1 = STYREG,400	150 EO 160 = STYREG,400 1STR 2 1STR 2 1STR 2 1F (N .6Q. NAMARY(I)) GO TO 190 1STR 2 1S	140			
STR 2 ISTR 2 ISTR 2 ISTR 2 ISTR 2 ISTR 2 IF (N .EQ. NAMARY(I)) GO TO 190 ISTR 2 ISTR 2 IF (NAMARY(I)) .EQ. 0) GO TO 170 ISTR 2 ISTR 3 ISTR					
IF (N .EQ. NAMARY(I)) GO TO 190 IF (NAMARY(I) .EQ. 0) GO TO 170 15TR 2 160 CONTINUE 170 brite (3.180) THE FORMAT (***, 28%, *THIS VARIABLE IS NOT USED. DAYA IGNOREC.*) STR 2 RETURN 190 IF (VARARY(K) .EC. 123.459E-15) GO TO 210 STR 3 2CC FORMAT (***, 28%, *THIS VARIABLE WAS DEFINED AS *.1PE13.6) 2CC FORMAT (***, 28%, *THIS VARIABLE WAS DEFINED AS *.1PE13.6) STR 3 210 VARARY(K) = X RETURN STR 3	IF (N .EQ. NAMARY(I)) GO TO 190 IF (NAMARY(I) .EQ. 0) GO YO 170 15 TR 160 CONTINUE 170 FRITE (3,180) IRETURN 190 IF 'VARARY(K) .EC. 123.459E-15) GO TO 210 STR 2CC FORMAT (**,28%,*THIS VARIABLE WAS DEFINED AS *,1PE13.6) 2TR 2TR 2TR 2TR 2TR 2TR 3TR	. 150			
IF (NAMARY(I) .EQ. 0) GO TO 170	IF (NAMARY(I) .EQ. 0) GO TO 170	-			
160 CONTINUE 170 %RITE (3.180) 186 FORMAT (***,28%,*YHIS VARIABLE IS NOT USED. DAYA IGROREC.*) RETURN 190 IF !VARARY!K) .EQ. 123.459E-15) GO TO 210 STR 3 ERITE (3,200) VARARY!K) 2CC FORMAT (***,28%,*THIS VARIABLE WAS DEFINED AS *.1PE13.6) 210 VARARY!K) = X RETURN STR 3 STR 3	160 CONTINUE 170 %RITE (3.180) STR 18G FORMAT (***,28%,*YHIS VARIABLE IS NOT USES. DAYA IGROREC.*) RETURN 190 IF !VARARY!K) .EC. 123.459E-15) GO TO 210 STR SRITE (3.200) VARARY!K) 2CC FORMAT (***,28%,*THIS VARIABLE WAS DEFINED AS *.1PE13.6) STR 210 VARARY!K) = X RETURN STR				
170 GRITE (3.180) 186 FORMAT (***,28%,*THIS VARIABLE IS NOT USES. DAYA IGROREC.*) RETURN 190 IF !VARARVIK) .EQ. 123.459E-15) GO TO 210 STR 3 ERITE (3,200) VARARVIK) 2CC FORMAT (***,28%,*THIS VARIABLE WAS DEFINED AS *.1PE13.6) 210 VARARVIK) = X RETURN STR 3 STR 3	170 brite (3.1eq) 180 FORMAT (***,26%,*YHIS VARIABLE IS NOT USES, DAYA IGNOREC.*) RETURN 190 IF !VARARY!K) .EQ. 123.459E-15) GO TO 210 STR STR 2CC FORMAT (***,28%,*THIS VARIABLE WAS DEFINED AS *.1PE13.6) 210 VARARY!K) = X RETURN STR			-	
18G FORMAT (***, 28X, *YHIS VARIABLE IS NOT USES. DAYA IGNOREC. *) STR 3	18G FORMAT (* * *, 26X, * THIS VARIABLE IS NOT USED. DAYA IGNOREC. *) STR				
RETURN 190 IF (VARARYIK) .EC. 123.459E-15) GO TO 210 STR 3 FRITE (3,2CO) VARARY(K) 2CC FORMAT (*+*,28%,*THIS VARIABLE WAS DEFINED AS *.1PE13.6) 210 VARARY(K) = X RETURN STR 3	RETURN 190 IF !VARARY!K) .EC. 123.459E-15) GO TO 210 STR STR STR 2CC FORMAT (*+*,28x,*THIS VARIABLE WAS DEFINED AS *.1PE13.6) 210 VARARY!K) = X RETURN STR	170	brite (3,180)	STR	2
190 IF !VARARY (K) .EQ. 123.459E-151 GO TO 210 STR 3 ERITE (3,2CO) VARARY (K) STR 3 2CC FORMAT (*+*,28x,*THIS VARIABLE WAS DEFINED AS *.1PE13.61 STR 3 210 VARARY (K) = X STR 3 RETURN STR 3	190 IF !VARARY(K) .EG. 123.459E-15) GO TO 210 STR SRITE (3.2CO) VARARY(K) STR 2CC FORMAT (*+*,28%,*THIS VARIABLE WAS DEFINED AS *.1PE13.6) STR 210 VARARY(K) = X STR RETURN STR	180		STR	
SRITE (3,200) VARARY(K) 2CG FOKMAT (*+*,28%,*THIS VARIABLE WAS DEFINED AS *.1PE13.6) STR 3 210 VARARY(K) = X RETURN STR 3	SRITE (3,200) VARARY(K) 2CC FORMAT (4+1,28%, THIS VARIABLE WAS DEFINED AS 1,1PE13.6) STR 210 VARARY(K) = X RETURN STR				
2CC FORMAT (*+ *,20x, *THIS VARIABLE WAS DEFINED AS *,1PE13.6) STR 3 210 VARARY(K) = X STR 3 RETURN STR 3	2CC FORMAT (*+ *,28%, *THIS VARIABLE WAS DEFINED AS *e1PE13.6) STR 3 210 VARARY(K) = X STR 3 RETURN STR 3	190		_ 51R	. 3
210 VARARY(K) = X STR 3 PETURN STR 3	210 VARARY(K) = X STR 3			STR	3.
RETURN	RETURN				
		210			
END STR 3	END STR :				
			END	STR	3
					<u>-</u>

SUBROLTINE ORDER(IN)	ORD	1
IMPLICIT INTEGER + 2(A-E), LOGICAL + 1(F), INTEGER (G-U), REAL (V-Z)	ORD	2
INTEGER*2 EQU(100,10,47,PRYLST(50)	ORD	3
COMMON /MOG/ VARARY(620).NAMARY(430).EQU.PR7LST	ORD	4
INTEGER+2 UNDEF(200)	ORD	5
COMMON /COMMN/ STPCOM, SYTREG, STPREG, CCM(200)	ORD	6
COMMON /GEN/ GBET(50)	ORD	7
CIMENSION F(620)	ORD	8
CO 1CC I = 1,620	JOR C	9
100 f(1) = .TRLE.	10RD	10
IN = EQU(1,1,3)	ORD	11
	ORD	12
C SET UP LOGICAL ARRAY.	ORC	13
C	ORD	14
CO 11C I = 1,400	10RD	15
110 IF (VARARY(I) .EQ. 123.459E-15 .OR. NAMARY(I) .EQ. 0) F(I) = .F.		16
CO 12C I = 402,6CC	10RD	17
120 IF (VARARY(I) .EQ. 0) F(I) = .FALSE.	10RD	
CO 13C I = 601.620	10RD	19
130 f(I) = .fALSE.	10RD	20
-C	ORD	21
C DETERMINE CROER CF EVALUATION.	ORĐ	22
C	ORD	23
E0 140 I = 2,10	10R C	24
CO 14C J = 1,3,2	20RD	25
IF (EQU(2,1,1) .LE. 0) GO TO 150	20RD	26
140 F(EQU(2,1,J)) = .TRUE.	ZORD	
150 ALPOS = 1	ORD	28
GLPOS = 1	ORD	29
160 NCHG = 0	GRD	30
NEED = 0	ORD	31
CO 24C I = 3,100	10RC	32
IF (EQU(1,1.1) .EQT -21 GO TO 230	TORD	
1F (EQU(1,1,1)) 170,270,260	10RC	34
170 [1 = [10RD	35
12 = 1	1CRD	_
IF(ECU(I1,2,1) .NE8) GO TO 180	1 ORD	37
IF (.NOT.(F(EQU(11,2,2)).AND.F(EQU(11,2,3)).AND.F(EQU(11,3,2)	•	38
A TO 145	10RC	
f(EQL(11,2,4)) = .TRUE.	IORD	40
GO TO 220	10RD	41
180 CO 200 K = 2,10	20RD	
IF(EQL(11.K.1) .EQ.0) GO TO 210	ZORC	43
IF (.NOT. F(EQU(11,K,3))) GC TC 230	20RD	44
IF (ECU(11,K,1) . EQ10) GO TO 190	20RD	-45
IF (.NOT. F(EQU(11,K,2))) GO TO 230	20RD	46
IF (EQU(11,K,1) .EQ6) GO TO 200	20RD	47
190 F(EQL(11,K,4))=".TRUE."	ZORD	-48
200 CONTINUE	20RD	49
K = K + 1	10RC	50
210 IF (EQU(11+1,1;1) .NE2F GO TO 220	-10RD	
11 = 11 + 1	10RD	52
GO TO 160	10RD	53
220 EQU(GLPOS, 1,27 * 12	10RC	54
EQU(12, 1, 1) = ALPOS	10RD	55

是一种,这种是一种,我们是一种,我们是一种,我们是一种,我们是一种,我们是一种,我们是一种,我们是一种,我们是一种,我们是一种,我们是一种,我们是一种,我们是一种,我们

TO SEPTION OF THE PROPERTY OF

M 806 - 13	1000	
ALPOS = 12 GLPOS = 12	10RD	56 57
12 = 12 + 1	10kD_	-58.
12 = 12 + 1 NCHG = NCHG € 1	10RD	59
IF (12 .LE, 11) GO TO 220	10RC	60
CO TO 24C	10RD-	-61
230 NEED = NEED + 1	10RD	62
240 CO 250 !. = 601,620	20RD	63
250 F(L) = .FALSE.	- 20RC	64
ZEC CONTINUE	10RD	65
C C C C C C C C C C C C C C C C C C C	CRD	66
CHECK TO SEE IF ALL EQUATIONS HAVE BEEN USED.	TORD	
C	ORE	68
270 IF (NEED .EQ. 0) GO TO 290	DRD	69
	ORD	770
C CHECK TO SEE IF ANY ADDITIONS WERE MADE ON THE LAST PASS.	ORD	71
c	ORD	72
IF (NCHG .GT. 0) GD TO 160	ORD	73
CALL ERROR(9)	ORD	74
GO TO 320	ORE	75
280 RETURN	ORD	76
c	DRD	77
C IF INGROER WAS REQUESTED CHECK CROER.	ORD	78
	ORC	75
29C IF (IN .EQ.1) RETURN	ORD	80
EQ 3CC I = 3.100	1090	81
IF (EQU(1.1.2) .EQ. 0) RETURN	-10RD	82
IF (EQU(1.1,2) .NE. [+1] GO TO 310	10RC	€3
3CC CONTINUE	10RD	84
PETURN	ORC	85
310 CALL ERROR(30)	ORC	66
RETURN	ORD	e7
320 K = 1	ORD	88
CC 33C I = 1.STPCOM	10RD	63
IF (NAMARY(I) .EC. O .DR. F(II) GO TO 330	10RC	5C
indeff(k) = :	IORD	91
K = K + 1	10RD	92
330 CONTINUE	108C - 108D	93 94
TO 34C I = STTREG,400	1080	95
IF (NAMARY(I) .EC. 0) GO TO 350	1080	
IF (F(I)) GO TO 340 LNDEF(K) = I	1020	57
K = K + 1	1080	-
340 CONTINUE	1080	99
350 K = K - 1	- ORD	
WRITE (3,360) (NAMARY(UNDEF(I)), I = 1,K)		101
36G FORMAT [1 UNDEFINED VARIABLES 10(5x,20(2x, 44), /)]		102
GC TC 200		103
END	CRD	104
P.I.A		- •
		-

	SUBROUTINE RUNNOC	RNE	1
	IMPLICIT INTEGER(A-D).INTEGER+2(E).INTEGER(F-U).REAL(V-Z)	RNE	Z
	INTEGER+2 EQU(100,10,4),PRTLST(50)	RNE	_ 3_
	COMMON /MOD/ V(620), NAMARY(400), EQU, PRTLST	RNE	4
	COMMON /GEN/ ALBET(50)	RNE	5
	CIMENSION ITERY(4,5), VIT(4)	RNE	6
	CIMENSION VYAB(3)	RNE	7
	COMMON /ALL/ VLST(50),MCDNAM(30,5)	RNE	8
	CO 1CC 1 = 2.10	IRNE	_ ₋ و
	CO 1CO J = 1,3,2	2RNE	10
	IF (EQU(2,1,J) .EQ. C) GO TO 110	ŹRNE	ii
700	V(EQU(2,1,J)) = V(EQU(2,1,J+1))	ZRNE	⁻ 12
	ITR = 0	RNE	13
4	IF (EQU(1,1,4) .LE. 0) GO TO 130	RNE	14
	NT = EQL(1,1,4) - 2	RNE-	- i 5 -
	ITR = NT	RNE	16
	CO 120 I = 1,NT	1RNE	17
	TTERY([,1) = 0	1RNE-	ie-
	VIT(1) = 0	IRNE	19
	CO 12C K = 2.5	2RNE	20
-120		ZRNE	
	ITERY(I,K) = EQUII,I+I,K-I)	RNE	22
130	NEXT = EQU(1,1,2)		
	CO 320 I = 1,100	1RNE 1RNE_	- 23 - 24 -
	A = NEXT	IRNE	
	NEXT = EQU(N.1.2)		25
_ ~	CO 3CC J = 2,1C	2RNE	26
	CP = -ECUIN, J, 1)	2RNE	27
	IF (OP .EQ. 0) GO TO 310	ZRNE	28
	N1 = EQU(N,J,2)	2RNE	29_
	N2 = EQL(N.J.3)	ZRNE	
	N3 = EQU(N,J,4)	2RNE	31
	GO TO (140,150,160,170,210,250,300,240,230,290),0P	2RNE	32
140	V(H2) = V(N1) + V(N2)	ZRNE	
	GO TO 300	2RNE	34
150	V(N3) = V(N1) - V(N2)	2RNE	35
	EO 10 300	ZRNE-	⁻ 36 ⁻
160	V(N2) = V(N1) + V(N2)	2RNE	37
	GO TO 300	2RNE	38
170	IF (V(N2) .NE. 0) GD TO 200	ZRNE	
	brite(3,18C) N	2RNE	4C
160	FORMAIL* ** LARNING DIVISION BY ZERO IN EQUATION *, 13)	2RNE	41
	IF(N2 .LE. 200) WRITE(3;190) NAHARY(N2)		~ 4Z [_]
190	FORMATI*+*,50X,*DIVISOR WAS *,A4}	2RNE	43
	V(N3) = 1.CE60	2RNE	44
	GO TO 300	ZRNE	-45
200	v(n3) = V(n1)/V(n2)	2RNE	46
	60 TO 300	2RNE	47
-210	IF (V(N1) .LE. 0) WRITE(3,220) N	ZRNE"	-48-
	FORMAT(** WARNING A NEGATIVE NUMBER WAS RAISED TO A POWER IN	EQUZRNE	49
	AATION *.13)	2RNE	50
	V(N3) = ASS(V(N1))**V(N2)	ZRNE"	- 51-
	CO TO 3CC	2RNE	52
230	IF (V(N1) .LE. 0) WRITE(3.220) N	2RNE	53
	V(N3) = ABS(V(N1))++(-V(N2))	ZRNE	-54-
	CO TO 300	22 N.E	

VTAB(2) = V(N2) VTAB(3) = V(NA,3,2) INT1 = V(EQL ,3,3)) INT2 = EQU(N,3,4) CALL TABLOK(VTAB,INT1,INT2,VRET) V(N3) = VRET GO TO 310 250 CO TO (26C,27C,2EC),N3 260 IF(V(N1) .LT. V(N2)) GO TO 300 CO TO 310 270 IF(V(N1) .EQ. V(N2)) GO TO 360 GO TO 31C 280 IF(V(N1) .GT. V(N2)) GO TO 360 CO TO 310 290 V(N3) = N1 * V(N2) 300 CONTINUE 310 IF (NEXT .LE. O) GO TO 330 320 CONTINUE 330 IF (11R .GT. O) GO TO 350 340 IF (ECU(1,10,1) .NE. O) CALL PRNTOT(0) RETURN	2RYE 20NE 2RYE 1RNE	59 61 62 63 64 65 66 67 68 69 70
INT1 = V(EQL ,3,3)) INT2 = EQU(N,3,4) CALL TABLOK(VTAB,INY1,INT2,VREY) V(N3) = VRET GO TO 310 250 CO TO (26C,27C,2EC),N3 260 IF(V(N1) .LT. V(N2)) GO TO 300 CO TO 310 270 IF(V(N1) .EQ. V(N2)) GO TO 360 GO TO 31C 280 IF(V(N1) .GT. V(N2)) GG TO 360 CO TO 310 290 V(N3) = N1 * V(M2) 300 CONTINUE 310 IF (NEXT .LE. 0) GO TO 330 320 CONTINUE 330 IF (ITR .GT. 0) GO TO 350 340 IF (EQU(1,10,1) .NE. 0) CALL PRNTOT(0)	2RNE 2RNE 2RNE 2RNE 2RNE 2RNE 2RNE 2RNE	59 61 62 63 64 65 66 67 68 69 70
INT2 = EQU(N, 3, 4) CALL TABLOR(VTAB, INT1, INT2, VRET) V(N3) = VRET GO TO 310 250 CO TO (26C, 27C, 2EC), N3 260 IF(V(N1) .LT. V(N2)) GO TO 300 CO TO 310 270 IF(V(N1) .EQ. V(N2)) GO TO 360 GO TO 31C 280 IF(V(N1) .GT. V(N2)) GO TO 360 GO TO 310 290 V(N3) = N1 * V(N2) 300 CONTINUE 310 IF (NEXT .LE. O) GO TO 330 320 CONTINUE 330 IF (11R .GT. O) GO TO 350 340 IF (ECU(1, 10, 1) .NE. O) CALL PRNTOT(O)	ZRNE ZRNE ZRNE ZRNE ZRNE ZRNE ZRNE ZRNE ZRNE ZRNE ZRNE ZRNE ZRNE ZRNE ZRNE ZRNE ZRNE ZRNE ZRNE	61 62 63 64 65 66 67 68 69 70
CALL TABLOK(VTAB, INT1, INT2, VRET) V(N3) = VRET GO TO 310 250 CO TO (26C, 27C, 2EC), N3 260 IF(V(N1) .LT. V(N2)) GO TO 300 CO TO 310 270 IF(V(N1) .EQ. V(N2)) GO TO 360 GO TO 31C 280 IF(V(N1) .GT. V(N2)) GO TO 36 GO TO 310 290 V(N3) = N1 * V(M2) 300 CONTINUE 310 IF (NEXT .LE. O) GO TO 330 320 CONTINUE 330 IF (11R .GT. O) GO TO 350 340 IF (ECULI, 10, 1) .NE. O) CALL PRNTOT(O)	ZRNE 2RNE 2RNE 2RNE 2RNE 2RNE 2RNE 2RNE 2RNE 2RVE 2RVE 2RVE 1RNE	61 62 63 64 65 66 67 68 69 70
GO TO 310 250 CO TO (26C,27C,2EC),N3 260 IF(V(N1) .LT. V(N2)) GO TO 300 CO TO 310 270 IF(V(N1) .EQ. V(N2)) GO TO 360 GO TO 31C 280 IF(V(N1) .GT. V(N2)) GO TO 360 CO TO 310 290 V(N3) = N1 * V(M2) 300 CONTINUE 310 IF (NEXT .LE. 0) GO TO 330 320 CONTINUE 330 IF (11R .GT. 0) GO TO 350 340 IF (ECULI,10,1) .NE. 0) CALL PRNTOT(O)	2RNE 2RME 2RNE 2RNE 2RNE 2RNE 2RNE 2RNE 2RYE 2PNE 2RNE 2RNE	63 64 65 66 67 68 69 70
250 CO TO (26C,27C,2EC),N3 260 IF(V(N1) .LT. V(N2)) GO TO 300 CO TO 310 270 IF(V(N1) .EQ. V(N2)) GO TO 360 GO TO 31C 280 IF(V(N1) .GT. V(N2)) GO TO 360 GO TO 310 290 V(N3) = N1 * V(M2) 300 CONTINUE 310 IF (NEXT .LE. 0) GO TO 330 320 CONTINUE 330 IF (ITR .GT. 0) GO TO 350 340 IF (EQU(1,10,1) .NE. 0) CALL PRNTOT(O)	2RME 2RNE 2RNE 2RNE 2RNE 2RNE 2RYE 2RYE 2RYE 2RYE 1RNE	64 55 66 67 68 69 70
260 IF(V(N1) .LT. V(N2)) GO TO 300 CO TO 310 270 IF(V(N1) .EQ. V(N2)) GO TO 360 GO TO 31C 280 IF(V(N1) .GT. V(N2)) GG TO 360 CO TO 310 290 V(N3) = N1 * V(M2) 300 CONTINUE 310 IF (NEXT .LE. 0) GO TO 330 320 CONTINUE 330 IF (ITR .GT. 0) GO TO 350 340 IF (EQU(1.10.1) .NE. 0) CALL PRNTOT(O)	2RNE 2RNE 2RNE 2RNE 2RNE 2RNE 2RNE 2RNE	65 66 67 68 69 70 71
CO TO 310 270 IF(V(N1) .EQ. V(N2)) GO TO 360 GO TO 31C 280 IF(V(N1) .GT. V(N2)) GO TO 360 CO TO 310 290 V(N3) = N1 * V(M2) 300 CONTINUE 310 IF (NEXT .LE. O) GO TO 330 320 CONTINUE 330 IF (ITR .GT. O) GO TO 350 340 IF (EQU(1.10.I) .NE. O) CALL PRNTOT(O)	2RNE 2RNE 2RNE 2RNE 2RNE 2RNE 2RNE 2RNE	66 67 68 69 70 71
270 IF(V(NI) .EQ. V(N2)) GO TO 3GO GO TO 31C 280 IF(V(NI) .GT. V(N2)) GO TO 3GO GO TO 310 290 V(N3) = N1 * V(M2) 300 CONTINUE 310 IF (NEXT .LE. 0) GO TO 330 320 CONTINUE 330 IF (ITR .GT. 0) GO TO 350 340 IF (EQUITION) NE. 0) CALL PRINTOT(O)	2RNE 2RNE 2RNE 2RNE 2RNE 2PNE 2RNE 1RNE	67 68 69 70 71
GO TO 31C 280 IF(V(N1) .GT. V(N2)) GO TO 30 GO TO 310 290 V(N3) = N1 * V(M2) 300 CONTINUE 310 IF (NEXT .LE. O) GO TO 330 320 CONTINUE 330 IF (ITR .GT. O) GO TO 350 340 IF (ECU(1.10.1) .NE. O) CALL PRNTOT(O)	2RNE 2RNE 2RNE 2RNE 2RNE 2RNE 1RNE	68 69 70 71
280 IF(V(N1) .GT. V(N2)) GG TO 30 GO TO 310 290 V(N3) = N1 * V(M2) 300 CONTINUE 310 IF (NEXT .LE. O) GO TO 330 320 CONTINUE 330 IF (ITR .GT. O) GO TO 350 340 IF (EQUIL.10.1) .NE. O) CALL PRNTOT(O)	2RNE 2RNE 2°NE 2RNE 1RNE	69 70 71
GO TO 310 290 V(N3) = N1 * V(M2) 300 CONTINUE 310 IF (NEXT LE. 0) GO TO 330 320 CONTINUE 330 IF (ITR .GT. 0) GO TO 350 340 IF (EQU(1.10.1) .NE. 0) CALL PRNTOT(0)	2RNE 2PNE 2RNE 1RNE	70 71
290 V(N3) = N1 * V(M2) 300 CONTINUE 310 IF (NEXT LE. 0) GO TO 330 320 CONTINUE 330 IF (ITR .GT. 0) GO TO 350 340 IF (EQUITION) NE. 0) CALL PROTOT(O)	ZONE ZRME IRNE	71
300 CONTINUE 310 IF (NEXT LE. 0) GO TO 330 320 CONTINUE 330 IF (ITR .GT. 0) GO TO 350 340 IF (EQU(1.10.I) .NE. 0) CALL PRNTOT(0)	2R4E 1RNE	
310 IF (NEXT LE. 0) GO TO 330 320 CONTINUE 330 IF (ITR .GT. 0) GO TO 350 340 IF (EQU(1.10.I) .NE. 0) CALL PRNTOT(0)	IRNE	72
320 CONTINUE 330 IF (ITR .GT. 0) GO TO 350 340 IF (EQU(1.10.I) .NE. 0) CALL PRNTOT(0)		73
330 IF (ITR .GT. 0) CO TO 350 340 IF (EQU(1.10.I) .NE. 0) CALL PRNYOT(0)	1846	74
340 IF (EQUITION) THE OF CALL PRINTOT(O)	RNE	75
	RNE	76
	RNE	77
	204.6	72
350 CU 39C I = 1.NI K = I	18XE	79
[TERY(1,1) = ITERY(1,1) + 1	IRNE	80
1E 117EBV11 31 NE AL CO TO 340	IRNE	81
IF (!TERY(!,1) .LE. ITERY(!,3)) GO TO 130	IRNE	£2
GO TO 350	IRNE	N3
360 VR = V(ITERY(1,2))	1RNE	84
IF (ITERY(1.11 .GT. 17 GO TO 370	IRNE	€5″
VIT(I) = VR	IRNE	EE
GD 70 130	1RNE	87
370 VRT = ABS(VIT(I)-VR)	1RNE	88
VIT(1) = VR	IRNE	89
IF (VRT .LT. V(11ERY(1,5))) GO TO 380	IRNE	
IF (ABS(VRT/VR) GT. V(ITERYTT,4) 171007 GO TO 400	IRKE	
380 TERY(I,1) = 0	1RNE 1RNE	92 93
390 CONTINUE CO TO 34C	RNE -	
400 IF (ITERY(K,1) .LT. ITERY(K,3)) GO TO 130	RNE	95
CALL ERROR(25)	RNE	56
TO TO 340	RME	_
END ,	RNE	98

IMPLICIT INTEGER (A-U) - REAL (Y-2) INTEGER * 2 EQU (10C-10-4)-PT (50) COMMON / MOD/ YARARY (620) - MAMARY (400) - EQU-PT COMMON / COMMN/ STPCOM-STRES-STPRES-COM (200) IF (NAR - EQ. 0) GO TO 250 PRITE (3-1C0) PO FORMAT (///- EQUATIONS*//) P	RT RT RT RT RT	4
INTEGER*2 EQU(10C,10,4),PT(50) COMMON /MOD/ VARARY(620),MAMARY(400),EQU,PT COMMON /COMMN/ STPCOM,STTRES,STPREG,COM(200) IF (NAR .EQ. 0) GO TO 250 PRITE (3,1C0) PORMAT (//,* EQUATIONS*//) P	RT RT RT	- 3 - 4 5
COMMON /MOD/ VARARY(620).NAMARY(400).EQU.PT COMMON /COMMN/ STPCOM.STTRES.STPREG.COM(200) IF (NAR .EQ. 0) GO TO 250 NRITE (3.1CO) PORMAT (//,* EQUATIONS*//) P	RT RT RT	4 5
COPMON /COPMN/ STPCOM.STTRES.STPREG.COM(200) IF (NAR .EQ. 0) GO TO 250 PRITE (3.1CO) PORMAT (///.* EQUATIONS*//) P	RT RT	5
IF (NAR .EQ. 0) GO TO 250 SRITE (3.1CO) 100 FORMAT (///.* EQUATIONS*//) P	RT-	
NRITE (3.1CO) P 100 FORMAT (///.* EQUATIONS*//) P		
100 FORMAT (///. EQUATIONS*//) P		-6-
100 TOWNER TOTAL	RT	7
	RT	8
	RT-	9
NRITE(3,120) [.([EQU(I,J,K),K=1,4),J=1,10] P	RT	10
	RT	11
	RT-	12
	RT	13
	RT	14
	RT-	15
	RT	16
	RT	17
• • • • • • • • • • • • • • • • • • • •	RT	_
•• •• • • • • • • • • • • • • • • • • •	RT	19
	RT	-
	RT -	
250 00.111.100	RT	22
	RT	23
114 104111 13134114 41.555011	RT	
-	RT	25
	RT	26
	RT	
	RT	
· · · · · · · · · · · · · · · · · · ·	RT	
	RT-	
	RT	21
	RT	32
•	rt-	
	RT	
TT TT TT T	RT	
	RT	
-	RT	
	R T	
	RT-	38
		_
	RT	40
	RT	
		42-
GO TO 200 . P	RT	43
350 10175 43 3401	RT	44
260 FORMAT (//)		~45~
Z60 FORMAT (//) P CO 27C I = 1.5C	RT	46
760 FORMAT (//) P CO 27C I = 1.5C IF K = I-1 IP	RT	46 47
260 FORMAT (//) CO 27C I = 1.5C K = I-1 IF (PT(I) LEG. 0) GO TO 280	RT RT	46 47 48
260 FORMAT (//) CO 27G I = 1.5G K = I-1 IF (PT(I) LEG. 0) GO TO 280 270 CONTINUE	RT RT RT	46 47 48 49
260 FORMAT (//) CO 27C I = 1.5C K = I-1 IF (PY(I) .EQ. 0) GO TO 280 270 CONTINUE 280 LRITE (3,250) (NAMARY(PT(I)),VARARY(PT(I)),I=1.K)	RT RT RT RT	46 47 48 49 50
260 FORMAT (//) CO 27C I = 1.5C K = I-1 IF (PY(I) LEQ. 0) GO TO 280 270 CONTINUE 280 BRITE (3.250) (MAMARY(PT(I)).VARARY(PT(I)),I=1.K) 290 FORMAT (10(5(5X,A4,V = 4,IPE13.6)/))	RT RT RT	46 47 48 49 50

SUBROUTINE TABLOK(VI,NI,N2,VRET) IMPLICIT INTEGER(A-U),REAL(V-Z) EIMENSIGN VI(3),VT(6CC),VX(1CO),VY(1GO),VZ(1GO)	TAB TAB	1 2
READ (6*N2) RT.NX,NY,NZ,(VT([],[=],NT),(VX([],[=],NX),(VY([],[=], A NY),(VZ([],[=],N2)	TAB TAB	3 4 5
CALL INTERPEVIOUX, NY ENZOYTOVX OV OVZ OVRETONZI RETLAN END	TAB TAB TAB	7 8
	- 4	
	·	
	-	*
		-
		
		_
END .		
	. ******	

SUBROUTINE COMMO(S.T.R.ER)	CMD	1
IMPLICIT INTEGER (A-U), REAL(V-Z)	CMD	Ž
INTEGER+2 EQU(100,10,4),PRTEST(50)	CMC	- 3-
COMMON /MOD/ VARARY(620) , NAMARY(400; , EQU, PRTLST	CMD	4
COMMEN /GEN/ ALBET(50)	CPD	5
COMMON /TAB/ TABL (20,2)	CMD	6-
EQUIVALENCE (A(1).ALBET(1))	CPD	7
DIMENSION S(80) .R(40) .C(10) .NA(16) . SAV(80) .A(50) .CDAT(10)	CMD	8
THIS ROUTINE CHECKS FOR CCPPAS AND RETURNS THEIR ARGUPENTS	CMD	- 9-
C ER = 1 IF STATEMENT IS IN ERROR	CMC	10
C ER = C IF STATEMENT IS CORRECT	CPD	11
C T INDICATES TYPE	CMD	~12~
C T = C EQUATION	CMD	13
C 1 ITERATE	CHE	14
C 2 INORCER	C>D	15
C 3 MOCULE NAPE	CPD	16
C 4 RUN MOD	CMD	17
C 5 GET	CMC-	18-
C é GIVE	CMD	19
C 7 POINT	CPD	20
C & COMMON	CMD	21-
C 9 REAE	CPD	22
C 10 PRINT	CMD	23
C 11 IF - GO TC	CMD	24-
C 12 IF - EXPRESSION	CMD	25
C 13 TABLE LOOK UP	CMD	26
	CHD.	27-
C R IS THE ARGUMENT LIST RETURNED	CMD	28
C The state and	CMC	29
TETA COAT/"ITERNCOMPOULMUNPGET GIVEPETHCOPPRESUPRINTY	CHD-	-30-
CATA GTO /*GGTQ*/	מאס	31
CO 100 I = 1,10	100	32
100 C(1) = CDAT(1)	-icat	. 33
1 * C	CMD	34
ER = 1	CPD	35
CO 110 1 = 1,40		- 36 -
IF (I .LT. 17) NA(I) = 0	1CPE	27
11 VAZ	1040	38
0 = (3)+1)VAZ	םאסו.	
110 R(I) = 0	1C×D	40
C	CPD	41
C - CHECK FOR INITIACTIZE	G43	- 42
C .	CMB	43
IF (S(1) .NE. A(41) .OR. S(2) .NE. A(36)) GO TO 120	CMD	44
F (SI3) .NE. A(41) .OR. SI41 .NE. A(30)) -GO TC 12C	CMD	- 45
IF (S(5) .KE. A(41) .CR. S(6) .NE. A(49)) GO TC 120	CPD	45
IF (S(7) .NE. A(38) .CR. S(8) .NE. A(41)) GO TO 120	CMD	47
TF (519) NE. A(28) OR. 5110) NE. A(45) GO TO 120	CH2	-48
ED TO 61C	CHD	49
C C	CMD	50
CHECK FOR TABLE LCCK UP	CHD.	
C CHECK FOR TABLE ELON OF	CMC	52
12C 00 13C I = 1,20	1CMD	53
120 to 130 1 = 1,20 IF (S(1) -EQ. A(1)) GO TO 140	TCHD	-54
· · · · · · · · · · · · · · · · · · ·	1646	55
130 K = I	26.56	33

		GO TO 150	CFD	56
	140	K = K + 2	CPD	57
_		1F (S(K).NE.A(30).OR.S(K+1).NE.A(44).CR.S(K+2).NE.A(4E) (GO TO 150		~ 5 8
		k = K + 3	CMD	59
		IF (S(K) .EQ. A(38).AND.S(K+1).EQ.A(45)) GO TC 530	CMD	60
			CHE	61
C		COMPRESS FIRST FOUR CHARACTERS	CPD	62
C			CPD	63
		CO 16C 1 = 1.4	1CMD	64
	160	RA(I) = S(I)	1CMC	65
		CALL NAMCHP(HA, HAME, NC)	CMD	66
		IF TNAME .EQ. GTC1 GO TO 690	CPD	67
		CO 170 I = 1.10	1CMD	68
		IFIC(1).EQ.MAMEIGO TO (190-210-220-280-290-340-350-360-370-280).		69
			1C×D	70
	170	CONTINUE	1CPD	71
_		IF(S(1).EQ.A(43).AND.S(2).EQ.A(45).AND.S(3).EQ.A(30)) GCTO 390	CMD	72
		TF(S(1)'.EQ.A(41)'.ANC.S(Z).EQ.A(441) GO TO 390	CPD	73
		ER = O	CND	74
_		CO 18C I = 1.80	1CKD	75
		IF (S(I) .eq.a(1)) RETURN	TCWC.	_
	160	CONTINUE	ICPD	77
		ER = 1	CYC	78
		RETURN	CWD	79
C			CHE	EC
C		ITERATE STATEMENT	CMD	81
τ		R(1) = ON DEFAULT = 0	CYD	82
C		R(2) = FROM DEFAULT = 1	CMD	83
C		R(3) = TIMES DEFAULT = 50	CMC	£4
		K(4) = PTUL DEFAULT = 51	CHD	
C		R(5) = ATOL DEFAULT = C	CPD	86
C			CMD	87
	195	TF(S(STINE).A(45).OR.STATTNETK(30TTOKTSYTTTNETA(45T) TRETURN	CMD	33
			CMD	89
		CO 2CC I * 1.6	1CMD	90
	200	2(1) = C	ICHE	
		\$(7) * A(2)	CPD	92
_		C(1) = A(3)	CMD	93
_		CALL RHYZERISTKY	CHD	_
Č		The story	CHE	55
C		FINC FROM	CMD CMD	96
C		C191 - A1441	CMD	98
		((2) = A(44) ,	CMD	55
_		C(3) = A(32)	ביינה ב	
		C(4) = A(35)		101
		((5) = A(37)		102
_		CALL COMFNDIC.S.S.NM.PS.11 R(2) - VARARY(NM2		102
C		nici - Annevildas		104
C		FIND TIPES		105
ב		TINU IITEJ	-	106
·		C(2) = A(3C)		107
		C(3) = A(41)	-	133
		C(4) = 4(4); C(4) = 4(3);		103
		C(5) + A(45)	_	110
		week : mande		

	C(6) = A(31)	CMD	
	C(7) = A(1)	CME	
	CALL COMPRETES TONNO PSOSES	CPD	
	R(3) = VARARY(NM)	CFD	
_C		CMO	
-C	FIND ATOL	CHE	
C		CND	
	C(2) = A(45)	CPD	
	C(3) = A(3C)	CND.	
	C(4) = A(35)	CMD	-
	C(5) = A(38)	CMD	
	C(6) * A(1)	CMD	
	CALL COPENDIC.3.6.NM.PS.0)	CME	
	R(S) = NM	CMD	
-E		CNO	
C	FIND PTCL	CMD	
<u> </u>		CMD	-
	E(2) = A(34)	CHO	
	AV = C	CMD	
	IF (NF .EQ. Q) NV = 5	CHI:	
	CALL COMPRECE, S.E. NX. PS, NV)	CM7	
_	R(4) = NM	これで	
C			
Ĕ	FIND CH	CHD	
٤	642) - 4425)	CYD	
. —	C(2) = A(35) C(3) * A(36)	CHD	
		343	
	CALL COPENDIC.S.3.NM.PS.O) R(1) = NM	CMD	
	IF (N) .EQ: 4017 R(I) = 0	CYD	-
	FR = C	CMD	
	RETURN	CME	
~ —		CMD	
č	INCREER STATEMENT	CYD	
č		CMD	-
	THE USIST NEW FLAGIOUR STOFF NEW TASTICAL STATE OF THE TRETTER	CMD	
• • • • • • • • • • • • • • • • • • • •	1 = 2	CMD	_
	ER = C	CMD	
	RETURN	CHE	
C		CPS	
Č	PCDULENAME STATEMENT	CPD	
	"RITH - RISH WILL CONTAIN THE PODUCE"NAME IN COMPRESSED FORM	C*D	152
C	•	CPE	
220	: IF (5(5) .NE. A(28) .CR. S(7) .NE. A(36)) RETURN	CMD	154
	T = 3 · · · · · · · · · · · · · · · · · ·	CPD	155
	CO 23C 1 = 1,80	1CMD	155
	K = 1	1CME	157
	TF (511) , EQ. ASSIT GO TO 240	TCMD	158
230	CONTINUE	1C#D	159
	CALL ERROR(18)	CMD	160
	· (R s]	CPD	~1£1
	RETURN	CM9	162
240) K = K + 1	CHD	163
	K2 ≅ K + 15	CKE.	161
	IF (KS .GT. 8C) KS = 77	CPD	165

P = Q	CMD 166
CO 26C 1=K.KS.4	1CMD 167
H = H + 1	1CMD 168
KT = 1+3	1CPD 169
IF (KT .GT. 80) KT = 80	1CME_170
Lili	15+0 171
DD 250 J = I.KT	2CMD 172
NA(L) = S(J)	2CMD 173
250 € = € + 1	2CME 374
CALL MAMCMP (MA, MM, MC)	1CPD 175
表[P] = KH	1070 176
	1CMD 177
IF (S(1+4) .EQ. C) GO TO 270	1CMD 178
260 CONTINUE	16MD 179
270 ER * C	CPR 160
RETURN	C#8 181
C	CPB 1F2
	CMD 183
C R(1) - R(5) CONTAIN THE MAPE OF THE PODULE TO BE RUN	
C	CMD 185
Zec If (5(5) NE. A(35) TORT S(6) NEL A(46)) RETURN	
T = 4	CPR 187
£ * C	CFD 168
K a 6	CHS 189
GQ 10 24°C	CMD 190
	CPD 191
C CET STATEMENT	CPD 192
C R(1) - R(4C) CONTAIN LOCATION OF ARGUMENT	C#\$ 153
	CMD 194 CMD 195
290 IF (S(4) .EQ. A(1) .CR. S(5) .EC. A(1)) RETURN	EPD 155
1 = 5	CPD 156
K = 2	CPS 197 CPS 198
G G	
300 K = K + 1	C*0 199
CO 31C 1 = x,80	015 1711 101 0435
KL = I-1	1CPD 252
1f(S(1).EQ. 0) GC TQ 320	1CMD 502
310 CONTINUE	CAE ACA
320 % = CM	CMD 2G5
CO 330 1 3 K, KL	1C≠D 236
V = K + 1	1CMD 207
AA(N) = S(I)	10#0 208
IF (S(1) .NE. A(3)) GO TO 330	7000 709
NA(N) = 0	1CMD 210
1 x 1 + 1	1C#E 211
IF (CM .EQ. 1) MA(1) = A(1) CALL NEM(NA, J)	1CMD 213
Rill = J	1CMD 214
N = CF	1CMC 215
330 CONT 18(E	TCPO ILE
NA(N+1) # 0	CPD 217
3F (CF .EQ. 1) NA(1) = 4(8)	CMD 218
CALL MAP (KA,7)	JPC 219
R(L+1) = .*	CX0 220

C GIVE STATEMENT CMD 223 C R(1) - R(4C) CONTAIN ARGUMENT LIST CMD 224 C R(1) - R(4C) CONTAIN ARGUMENT LIST CMD 225 T = 6 CMD 225 T = 6 CMD 225 CM = 0 CMD 225 CMD		ER = 0 Return	CMD 221 CMD 222
C GIVE STATEMENT C R(1) - R(14C) CONTAIN ARGUMENT LIST C R(1) - R(14C) CONTAIN ARGUMENT LIST C R(1) - R(14C) CONTAIN ARGUMENT LIST C R(1) IF (S(5) - EQ. A(1)) RETURN C C C C C C C C C C C C C C C C C C C			
C R(1) - R(4c) CONTAIN ARGUMENT LIST CMC 225 CM 240 I = 6 CMD 227 CMD 227 CMD 228 K ÷ 4 CMD 230 GD TC 300 CMD 230 C POINT STATEHENT CMD 233 C R(1) CONTAINS NAME LOCATION CMD 233 SD IF (5(5) **NE** A(30)) RETURN CMD 233 **A(1) = 5(5) **NE** A(30)) RETURN CMD 233 **A(1) = 5(5) CMD 233 **A(1) = 5(7) CMD 234 **A(1) = 5(8) CMD 246 **A(1) = 10 CMD 246 **C CMMON STATEMENT CMD CMD 246 **C CMMON STATEMENT CMD 248 **C CMMON STATEMENT CMD 248 **C CMD 245 **C CMD 245 **C CMD 245 **C CMD 245 **C CMD 255 **C CMD 256 **C CMD 257 **C CMD 2	ř	CIVE CTATEMENT	
C	č		
349 IF (S15) .EQ. A(1)) RETURN 1		THE STATE OF THE S	CMD 226
T = 6		IF (5(5) .FO. A(1)) RETURN	
C	34,		
CH = 0 GO TC 300 CMD 231 C C POINT STATEMENT C R(1) CONTAINS NAME LOCATION CMD 232 C R(1) CONTAINS NAME LOCATION CMD 233 S50 IF (\$(5) .NE. A(30)) RETURN I = 7 NA(11' = \$(5) .NE. A(30)) RETURN CMD 237 NA(11' = \$(5) .NE. A(30) .NETURN CMD 239 NA(2) = \$(7) .NED 238 NA(2) = \$(7) .NED 239 NA(3) = \$(6) .NED 240 NA(4) = \$(6) .NED 239 NA(3) = \$(6) .NED 240 NA(4) = \$(6) .NED 240 NA(5) = 0 CMD 243 R(1) = J CMD 244 R(1) = J CMD 246 CMD 255 CMD 251 CMD 252 CMD 252 CMD 253 CMD 254 CMD 255 CMD 254 CMD 255 CMD 256 CMD 256 CMD 256 CMD 256 CMD 256 CMD 256 CMD 266 CMD 266 CMD 266 T = 10 .CMD 267 CMD 267 CMD 267 CMD 271 CMD 272 CMD 271 CMD 272 CMD 273 CMD 271 CMD 272 CMD 273 CMD 274 CM			
CO TC 300 CMD 231 C POINT STATEMENT CMD 233 C R(1) CONTAINS NAME LOCATION CMD 234 350 IF (S(5) - NE. A(301) RETURN CMC 236 1 = 7 NA(11 = S(5) - NE. A(301) RETURN CMC 236 NA(2) = S(7) CMC 236 NA(3) = S(6) CMC 246 NA(4) = S(5) CMC 246 CMD 241 R(11) = J CMC 245 RETURN CMC 246 CMC 246 RETURN CMC 247 CMC 247 NO ARGUMENT RETURNED CMC 249 CMC 247 CMC 248 CMC 249 CMC 250 CMC 260 CMC 261 CMC 260 CMC 261 CMC 262 CMC 262 CMC 262 CMC 263 CMC 264 CMC 267 CMC 266 CMC 267 CMC 267 CMC 267 CMC 267 CMC 267 CMC 271 CMC 272 CMC 271 CMC 272 CMC 273 CMC 274 CMC			
C POINT STATEMENT CMD 232 C R(1) CONTAINS NAME LOCATION CMD 235 C R(1) CONTAINS NAME LOCATION CMD 235 C R(1) CONTAINS NAME LOCATION CMD 235 T = 7 CMC 235 NA(1) = S(5) NE. A(30)) RETURN CMD 237 NA(1) = S(5) CMD 237 NA(2) = S(7) CMD 239 NA(3) = S(8) CMD 239 NA(3) = S(8) CMD 241 NA(5) = 0 CMD 241 NA(5) = 0 CMD 242 CALL NAM(NA.J) CMD 242 ES = C CMD 245 ES = C CMD 245 EFTURN CMD 246 C COMMON STATEMENT CMD 246 C CMM 247 C COMMON STATEMENT CMD 249 C CMD 245 C CMD 246 C CMD 245 C CMD 246 CMD 246 CMD 246 CMD 246 CMD 246 CMD 256 C CMD 257 C CMD 257 C CMD 273			
C R(1) CONTAINS NAME LOCATION CMD 234- C			
C R(1) CONTAINS NAME LOCATION CMD 234- C	č	POINT STATEMENT	CMD 233
C			CMD 234
T = 7			CMD 535
T = 7	350) IF (S(5) .NE. A(30)) RETURN	CMD 236
MA(2) = S(7)			CMD 237
MA(3) = \$(8)		NA(1) '= 5(6)	C+0 238
NA(4) = S(5)		RA(2) = S(7)	CMD 239
NA(5) = 0		NA(3) = S(8)	CMC 24C
CALL NAM(NA,J)		NA(4) = S(5)	CMD 241
R(1) = J EN = C CMD 245 RETURN CPD 246 C COMMON STATEMENT CMD 247 CMD 248 NO ARGUMENT RETURNED CMD 250 This is a company compa		NA(5) = 0	
ER = C RETURN CMD 246 C C C COMMON STATEMENT NO ARGUMENT RETURNED CMD 249 760 IF (S(5) **NE* A(35) **UR* S(6) **NE* A(36)) RETURN CMD 251 T * E K * * G CMD 255 CM * 1 GO TO 30G CMC 255 C REAC STATEMENT CMD 256 C C REAC STATEMENT CMD 257 C NO ARGUMENT RETURNED CMD 257 C NO ARGUMENT RETURNED CMD 256 C C RETURN CMD 256 C C RETURN CMD 256 CMD 257 CMD 256 CMD 266 CMD 267 CMD 266 CMD 267 CMD 266 CMD 267 CMD 268 CMD 267 CMD 277 CMD 27 C			
RETURN CMD 246 CMD 247 CMD 247 CMD 248 NO ARGUMENT RETURNED CMD 249 CMD 250 CMD 255 CMD 256 CMD 256 CMD 255 CMD 256 CMD 260 CM		R(1) = J	CHC 244
C COMMON STATEMENT CMD 247 C COMMON STATEMENT CMD 248 NO ARGUMENT RETURNED CMD 250 CMD 250 CMD 250 T * E CMD 251 T * E CMD 252 CM * 1 CMD 252 CM * 1 CMD 254 GO TO 306 CMC 255 C READ STATEMENT CMD 257 C NO ARGUMENT RETURNED CMD 258 C T * 9 CMD 259 CMD 250 CMD 260 CMD 267 CMD 271 CMD 272		th = C	
C COMMON STATEMENT CMD 248 NO ARGUMENT RETURNED CMD 249 280 IF (S(5) .NE. A(35) .UR. S(6) .NE. A(36)) RETURN CMC 251 I * E CMD 252 K * 6 CMD 253 CM * 1 CMD 254 GO TO 304 CMC 255 CM READ STATEMENT CMD 256 CM READ STATEMENT CMD 256 CM ARGUMENT RETURNED CMD 256 CMD 259 T * 9 CMD 259 CMD 260 T * 9 CMD 260 CMD 261 CMD 265 CMD 265 CMD 265 CMD 265 CMD 265 CMD 266 CMD 266 CMD 266 CMD 267 CMD 271 CMD 272 CMD 272 CMD 272 CMD 272 CMD 272 CMD 272 CMD 273		RETURN	
NO ARGUMENT RETURNED CMD 249			
CHD 250 CHD 251 CHD 252 CHD 253 CHD 254 CHD 255 CHD 256 CHD 256 CHD 256 CHD 256 CHD 256 CHD 258 CHD 258 CHD 256 CHD 257 CHD	C		
360 F (S(5) .NE. A(35) .UR. S(6) .NE. A(36)) RETURN		NO ARGUMENT RETURNED	
T = E			
R = 6	36		
CM = 1			
GO TO 306 C REAC STATEMENT C NO ARGUMENT RETURNED CMD 257 CMD 257 CMD 258 CMD 257 CMD 257 CMD 259 370 IF (\$(5) .EQ. A(1)) RETURN CMD 260 T = 9 CMD 251 CMD 262 CMD 264 CMC 264 CMC 264 CMC 264 CMC 264 CMC 266 CMC 266 CMC 266 CMC 267 CMC 267 CMC 267 CMC 267 CMC 267 CMC 268 CMC 268 CMC 268 CMC 268 CMC 268 CMC 269 CMC 270 CMC 270 CMC 271 CMC 272 CMC 272 CMC 272 CMC 273			
C REAC STATEMENT CMD 256 C NO ARGUMENT RETURNED CMD 258 U CMC 259 370 IF (S(5) .EQ. A(1)) RETURN CMD 260 T = 9 CMD 251 ER = C CMC 262 RETURN CMC 264 CC PRINT STATEMENT CMD 265 C R(1) - R(4C) CONTAIN PRINT LIST CMD 265 C CMD 267 T = 10 CMD 268 T = 10 CMD 268 CMD 269 CM = C CMD 270 CMD 271 SO TC 300 CMD 272 CMD 273 CMD 273			
C REAC STATEMENT CMD 257 C NO ARGUMENT RETURNED CMD 258 370 IF (S(5) .EQ. A(1)) RETURN CMD 260 T = 9 ER = C RETURN CMC 262 CMC 264 CC PRINT STATEMENT CMD 265 C R(1) - R(4C) CONTAIN PRINT LIST CMD 265 C SMD 267 T = 10 CMC 268 T = 10 CMC 268 CMC 268 CMC 271 CMC 271 CMC 271 CMC 271 CMC 271 CMC 272 CMC 272			
C NO ARGUMENT RETURNED CMC 259 370 IF (S(5) .EQ. A(11) RETURN T = 9 ER = C RETURN CMC 264 CMC 265 CMC 265 CMC 265 CMC 265 CMC 265 CMC 265 CMC 266 CMC 266 CMC 267 CMC 268 CMC 270 CMC 271 CMC 271 CMC 271 CMC 272 CMC 272 CMC 273	Č	OCAP CTATEMENT	
C			
370 IF (S(5) .EQ. A(11) RETURN T = 9 CMD 251 ER = C RETURN CMC 262 CML 264 CML 265 CML 265 CML 265 CML 265 CML 265 CML 265 CML 266 CML 267 CML 267 CML 267 CML 268 CML 271 CML 269 CML 272 CML 273 CML 273		NU APQUIERT RETURNED	•
T = 9 ER = C RETURN C C CML 264 CML 265 C R(1) - R(4C) CONTAIN PRINT LIST C SBO IF (S(5)) -NE- A(30)) RETURN T = 10 C CMD 268 CMD 268 CMD 268 CMD 270 CMD 271 CMD 272 CMD 273 CMD 274	37	O IF (S(5) .FO. A(1)) RETURN	
ER = C RETURN CMC 262 CML 264 CC PRINT STATEMENT C R(1) - R(4C) CONTAIN PRINT LIST C 380 IF (5(5) -NE- AT30)) RETURN T = 10 CMD 268 CMD 269 CMD 270 CMD 271 GO TC 300 CMD 272 CMD 273 CMD 274	J.,		
RETURN CM 264		· ·	
C		- · · · · · · · · · · · · · · · · · · ·	
C PRINT STATEMENT CMD 265 C R(1) - R(4C) CONTAIN PRINT LIST CMD 266 C SMD 267 T * 10 CMD 268 C C C CMD 270 C C C C CMD 271 C C C C CMD 272 C C C C CMD 273 C C C C C C C C C C C C C C C C C C C	C		
C R(1) - R(4C) CONTAIN PRINT LIST C = MD 267 380 IF (5(5) -NE- AT301) RETURN T = 10 CMD 269 CM = C CMD 270 CMD 271 GD TC 300 CMD 272 CMD 273 CMD 273		PRINT STATEMENT	CMD 265.
C	č	- · · · · · · · · · · · · · · · · · · ·	
380 IF TS(5) .NE. AT30)) RETURN T * 10 CMD 269 CM = C CMD 270 CMD 271 GD TC 300 CMD 273 CMD 273 CMD 274			GMD 267
CH ≈ C CMD 27C K ± 5 CMD 271 GD TC 300 CMD 272 C CMD 273 C TF STATEMENT CMD 274	39	O IF (S(5) NE. ATBOX) RETURN	CPD 268
CMD 271 GD TC 300 CMD 272 C CMD 273 C TF STATEMENT CMD 274		T = 10	
3D TC 300 CMD 272 CMD 273 CMD 274		CH = C	
C CMD 273 C TF-STATEMENT CMD-274		**	-
C TF-STATEMENT CMD-274		SD TC 300	
C RELI CONTAINS FIRST ARGUMENT CHD 275			
	С	RELL CONTAINS FIRST ARGUMENT	CMD 275

C RIZE CONTAINS LOGICAL OPERATOR	CHO S.	
C RES CONTAINS SECOND GPERATOR	CMD 2	
C FOR IF - EXPRESSION STATEMENT S CONTAINS EXPRESSION	C*0_5	
C FOR IF - GO TO STATEMENT R(4) CONTAINS POINT VAR LOCATION	CND 2	
C LOOF FOR .	CHC 2	
	CMD 2	
C 200 mg (10 1 n 3 n0	CMD 2	
390 CO 420 I = 3,80	1CMD 2	
IF (S(1) .EQ. A(3)) GO TO 410	1CHD 2	
400 CONTINUE	1CHD 2	
ER = C	CHC 2	
RETURN	CMD 2	-
C	CMD 2	
C LOOK FOR * SIGN	CMD 2	-
C C	CMC 2	
410 ED 42C I = K.80	1CMD 2	
1f (\$(1) .Eq. A(1))60 TO 510	1CMD 2	93
420 CONTINUE	1CMD 2	94
	CHD 2	55
C F'ND GO TO	CMD 2	96
C	CMD 2	97
C(1) = A(43)	CMC 2	
(12) = X(35)	CHD 5	
C(3) = A(30)	CMD 3	
C(4' = A(35)	CMD 3	
CALL COMPHDIC, S, 4, NV, PS, 01	CMD 3	-
1F (PS .GT. 0) GO YO 430	CMD 3	_
CALL ERROR (19)	CMD 3	
ER = 1 RETURN	CMC 3	
43C R(4) = HM	CMD 3	
430 (44 - 14)		
c ·	CHD 3	
C CHECK FOR ISLT R(2) = 1	CMD 3	-
	CMD 3	-
440 C(1) = A (41)	CPO 3	312
C(2) = A(31)	CMD 3	113
C(3) = A(38)	CMD 3	114
C(4) = A(30)	CMD 3	115
CALL COMFND(C,S,4,NM,PS,0)	CMD 3	116
IF 105 .EQ. 01 GO 10 450	CHC 3	
R(3) = NH	CMD 3	-
R(2) = 1	CHD 3	_
60 10 480	CHD 3	
C CHECK FOR ISEQ R(2) = 2	CKD 3	_
C CHECK FOR ISEQ R(2) = 2	CMD 3	
450 C(3) = A(45)	CMD 3	_
C(4) = A(33)	CPD 3	_
CALL COMPAD (C.S. S. NH. PS. O)		_
IF (PS .EQ. 0) GC 70 463	CMD 3	_
R(3) = NH	CMD 3	_
R(2) * 2	CMD 3	
GO TO 480	CMD 3	-
U 10 10 10 10 10 10 10 10 10 10 10 10 10	GFU 3	. , (

10 4041 00 4401 441	
IF (S(I) .EQ. A(2)) S(I) = 0 NA(KI) = S(I)	1CMD 386
IF (S(1) . AE. O . AND. 1 . NE. RP) GO TO 550	1CMD 387
NA(K1+1) = 0	1CMC 389
CALL MAMINA, K2?	1CMD 390
NV = NV + 1	1CMD 391
R(NV+1) = K2	1CMD 392
R(2) = Ny-1	1CMC 353
01 - C	1CMD 394
550 K1 = K1 + 1	1CMD 395
560 S(1) = 0 LP = LP - 2	1CMD 396
f = 0	CMC 357 CMD 398
CO 570 1 = K.LP	1CMD 399
L = L + 1	1CME 460
570 NA(L) = S(I)	1CPD 4C1
CALL NAMEPP(NA.NAME.NC)	CMD 402
CO 58C 1 = 1,20	1CMD 423
K = [1CMC 4C4
IF (TABLEI,1) .EQ. NAME) GC TC 600	1CMD 405
IF (TABLISAL) .EC. OT GO TO 590	1CMD 405
580 CONTINUE	1CMD 4C7
CALL ERROR (27)	CMC 4CE
REPURS	CMD 409
SOP TACL(K,1) = NAME	CMD 413
TABL (K, 2) = \(\),	CMC 411 CMD 412
R(1) * K ER = 0	CMD 412
RETURN	CMD 414
	C4C 415
Eh = C	CMD 416
IF (TABL(K.2) .EQ. NV) RETURN	CMD 417
CALL ERROR (28)	CMD 418
ER = 1	CMC 419
RETURN	CHD 420
	CMD 421
C INITIALIZE STATEMENT	CMD 422
(ATO DO AZE T : 1'.10'	CMC 423
C10 D5 C2C 1 - 1410	1CMD 424 1CMD 425
620 S(I) = 0 CO 630 I = 2.10	1CMD 426
E0 630 (= 2,10	2CMD 427
P1 = I	2CMD 428
P2 = J	2CMD 429
IF (EQU(2,PI,P2) .EQ. 0) GO TO 640	2CMC 430
630 CONTINUE	2CMD 431
CALL ERROR(31)	CMD 432
640 CALL RMVZER(S.N6)	CHD: 433
CO 65C I = 1.16	15HC 434
K ≠ ₹	1CHD 435
KA(1) = 2(1)	1CPD 436
S(I) = 0	1CHD 437
IF (NA(I) .EQ. A(I)) GO TO 660	1CHD 438
650 NA(1+1) = 0	1CHD 439
660 NA(K) = 0	CMD 440

CALL NAM(NA.K) CALL RMVZER(S.N6)	CMD 443 CMD 443
EQU(2,P1,P2) = K	CMD 44
[0 670 I = 1,16	1CMD 444
K = 1	1CHD 449
	1CHD 441
S(1) = 0	1CHD 441
IF(NA(1) .EQ. A(3) .OR.NA(1) .EQ. O) GO TO 680	1CHD 449
70 NA([+1] = 0	-
BO NA(K) = 0	CHD 450
CALL NAM(NA,K)	CMD 45
tut(2,P1,P241) = K	CHD 45
P2 = 4-P2	CMD 45
P1 = P1 + (3-P2)/2	CMD 45
CALL RMYZER(S,N6)	CHC 45
IF (NE .GT. C) GO TO 640	CHD 45
ECU(2,1,3) = P2	CMD 45
T = 14	CHD 45
ER = 0	CMD 45
RETURN	CMD 46
90 IF (S(5) LE. A(24)) GO TO 700	CPD 46
1 * C	CMD 46
ER = C	CMD 46
RETURN	CPD 46
00 CC 710 I = 1.4	1CMD 46
10 S(I) = 0	1CMC 46
CALL RHVZER(S.K)	CMD 46
CO 72C I = 1,K	1CHD 46
20 NA(I) = S(I)	1CPD 46
NA(K+1) = C	CHO 47
CALL HAM(NA,K)	CHD 47
T = 15	CPD 47
R(1) = K	CHD 47
ER = C	CMD 47
RETURN	CMD 47
ENU	C40*37

	SUBROUTINE COMPNC(C,S,N,NM,PS,R) IMPLICIT INTEGER(A-U), REAL(V-Z)	CMF CMF	1 2
	INTEGER+2 EQU(100.10.4). PRILST(50)	EMF	- 5
	COMMON /MOD/ VARARY(62C), RAPARY(4CO), EQU, PRTLST	CAF	4
	COMMEN (GEN/ ALBET(50)	CMF	5
	CIMENSION C(16), S(80) , NA(16)	CHE	— é
	PS * C	CMF	7
	NM = 401	CMF	8
	51 = 1	CHE	- 9
100	CO 11C I = ST,80	ICht	10
	K * 1	1C#F	_11
	IF (\$11) .EQ. 0) GO TO 120	1CMF	
	IF (S(1) .EQ. C(1)) GO TO 170	1CMF	13
	CONTINUE	1CHF	- 14
	IF (K .EQ. C) KEIUKN	CPF	
130	00 140 1 = 402,600	1CHF	16 17
	K * [1CPF	
	IF (VARARY(I) .EQ. R) GO YO 180 IF (VARARY(I) .EQ. C) GO TO 150	1CMF	19
140	CONTINUE	10MF	20
140	PS = -1	CMF	21
	CALL ERROR(2)	CPF	22
	NM = 0	CMF	23
	RETURN	CFF-	
150	VARARY(K) = R	CMF	25
	NH = K	CME	26
	RETURN	CMF	27
170	KS = K + N - 1	Che	28
	ST = R + 1	CHF	29
	L = 1	CMF	
	CC 180 I = K.KS	1CPF	
	IF (S(1) .NE. C(L)) GO TO 100	1CFF	32
180	L * L + I	1CMF	
	00 196 ! * K•KS	1CHF	34
190	\$(1) = 0	1CMF	- 35 - 36
	K = KS + 7	CMF	37
		1CMF	38
	CO ZOO I = K.80 SY = I	1CPF	
	IF (S(I) .EQ. 0 .OR. S(I) .EQ. ALBET(3)) GO TO 210	1CMF	40
	[* [+]	1CMF	41
	MA(L) = S(T)	1CFF	_
200	S(1) = 0	1CMF	43
210	NA(L+1) = C	CMF	44
	CALL NAMINA, NAY	CHF	- 45
	PS = 1	CMF	46
	CALL RHVZER(S,K)	CMF	47
	KEICKN	•	~ 48
	END	CMF	49

SUBROLTINE MAININ	MIN	1 2
IMPLICIT INTEGER (A-U), REAL(V-Z)	MIN	
CIMENSION S(80) . R(40) . NA(16)	MIN	4
LOGICAL CM Integer+2 mnpg(1cc,6),prtlst(100),getlst(100)	MIN	5
	MIN	- 6
COMMEN /BUG/ DEBUG COMMEN /MAIN/ VRB(620).NAMS(400).MNPG.PRTLST.GETLST.MAINM(200)	MIN	7
COMMON /ALL/ VLST(50), MODNAM(30,5)	MIN	ė
COMMON /GEN/ ALBET(50)	-MIN	<u>,</u>
INTEGER + 2 EQUI 10C. 10. 4)	MIN	10
COMMON /MOC/ VARARY(620).NAMARY(400).EQU	MIN	11
EO 1CC 1 = 1,100	-ININ	
CO 100 J = 1.6	2MIN	13
100 PNPG(1,J) = 0	2418	14
EQ = 2	MIN-	
RE = C	MIN	16
ADT - 1	MIN	17
NGV = 1	MIN.	
CARD = 0	MIN	19
11C REAC(1, 12C, ENC=330) S	MIN	
120 FORMAT(80A))	- MIN	
CARD = CARC + 1	MIN	22
IF (CARD .EQ. 1 .OR. CARD .EQ. 60) WRITE (3,130)	MIN	23
ISC FORMAT ('1')	MIN.	
CPT= 81	MIN	25
ART = 0	MIN	26
AB * C	- HIN	
CO 14C I = 1.80	IMIN	28
w _ a1 _ t	IMIN	
IFISIKI .NE. ALBETTIBIT HRT = I	-IMIN	= _
IF(S(K).EQ. ALBET(13) .ANC. NRT.EQ.O) NB = K	IMIN	
140 IF(S(K).EQ. ALBET(50)) CHT = K	IMIN	32
IF(CMT .EQ.81) GC TO 160	MIN.	⁻ 33
ATMS = 114- NB	HIN	34
hRITE(3,15C) CARE,(S(I),I = 1,CMT),(ALBET(13),I =1,NTMS),(S(I),I	- MIN	35
A CMT.NB)	MIN.	⁻ 36
150 FGRPAT(5x,13,2x,12GA1)	MIN	37
GO TO 170	MIN	36
16G BRITE(3,15C) CARD,S	- MIN	- 39
170 CC 180 1 = 1,60	1MIN	40
180 IF(S(11 .EG. ALBET(13) .OR. I .GE.CMT) S(1) = 0	IMIN	42
CALL RMYZER(S.K)	MIN.	-42
IF(K.EQ.0) GS TO 110	MIN	43
C	MIM	44
CHECK FOR DEBUG	- HIN	-45
C	MIN	46
IF (S(1) .NE. ALBET(46).OR.S(2).NE.ALBET(45).OR.S(3).NE.ALBET(46	I) MIN	47
A .OR.S14).NE.ALBET(29).OR.S15).NE.ALBET(43)) GC TO 190	MIN	-48
PNPG(1-1) = 1	MIN	
GO TO 11C	MIN	
190 CONTINUE	MIN	_ ::::
CALL COMND(S.T.R.ER)	MIN	
IF (T .EQ. 0) GC TO 340	MIN	53
IF (1 .EQ. 15) GO TO 440		-54
1r 11 .Eq. 131 GO 10 440	1.4 4.4	

是一个,我们是一个,

```
2CC CALL ERROR(26)
                                                                              MIN
                                                                                    56
CO TO 110
210 GO TO (220,200,230,230,240,200,270,110,280,290,370,200),T
                                                                                    57
                                                                              MIN
                                                                              MIN
                                                                                    58
       60 TO 200
                                                                              MIN
                                                                                    59
  22C MYPG(EQ.1) = 1
                                                                              MIN
                                                                                    60
       PNPG(EQ.2) = R(IT
                                                                              MIN
                                                                                    61
       PNPG(EQ:3) = R(2)
                                                                              MIN
                                                                                    62
       PAPG(EQ.4) = R(3)
                                                                              MIN
                                                                                    63
      PNPG(EQ.5) = R(4)
                                                                              MIN
                                                                                    44
       PNPG(EQ.6) = R(5)
                                                                              MIN
                                                                                    65
       EQ = EQ +1
                                                                              M IN
                                                                                    ÉÉ
      CO TC 11C
                                                                              MIN
                                                                                    67
C
                                                                              MIN
                                                                                   68
Č
       RUN PCD STATEMENT
                                                                              MIN
                                                                                    69
                                                                              MIN
                                                                                    70
  230 CALL MONAMEINNU,R)
                                                                              MIN
                                                                                    71
       PNPG(EQ,1) = 4
                                                                              MIN
                                                                                    72
       PNPG(EQ.2) = PNU
                                                                              MIN
       PNPG(EQ.3) = RC
                                                                              FIN
                                                                                    74
       EQ = EQ + 1
                                                                              MIN
                                                                                    75
       RC = C
                                                                              218
       GO TO 110
                                                                              MIN
                                                                                    77
                                                                              MIN
                                                                                    78
    - GET STATEMENT
τ
                                                                              MIN
                                                                                    79
                                                                              MIR
                                                                                    83
  240 AND = NGV + 40
                                                                              MIN
                                                                                   FI
       PAPELEO. 11 = 5"
                                                                              MIN
                                                                                    23
       PNPG(EQ.2) = NGV
                                                                              PIN
                                                                                    83
                                                                              MIN
                                                                                    84
       TO 25C I = NND NGV
                                                                             1418
       IF(R(K) .EQ. C) GO TO 260
                                                                             IMIN
                                                                                    86
       GETLST(1) = R(K)
                                                                             IMIN
                                                                                   87
  250 K = K + 1
                                                                             IMIN'
  260 PNPG(EQ.3) = J
                                                                              MIN
                                                                                    23
       NGV = J + 1
                                                                              MIN
                                                                                    90
       EQ = EQ + 1
                                                                              MIN
                                                                                    91
       GO TO 110
                                                                              MIN
                                                                                    92
                                                                                    93
                                                                              MIN
τ
      POINT STATEMENT
                                                                              MIN
                                                                              MIN
                                                                                    95
  270 VARARY(R(1)) = EC
                                                                              MIN
                                                                                    96
      TO TO 110"
                                                                              MIN
                                                                                    97
τ
                                                                              MIN
                                                                                   98
       READ STATEPENT
                                                                                   CQ
                                                                              MIN
                                                                              MIN 1CC
   28C RD = 1
                                                                              MIN 101
       GO TO 110
                                                                              MIN 102
٦.
٦.
                                                                              MIN 103
       PRINT STATEMENT
                                                                              MIN 164
                                                                              MIN 195
¢
   290 KNC"= NPT + 40""
                                                                              PIN 136
       PNPG(EQ.1) = 10
                                                                              MIN 107
      PNPG(EQ.2) = NPT
                                                                              MIN 1CE
                                                                             MIN 109
       K = 1
       CO 3CC I = NPT.NAD
                                                                             IMIN 110
```

	IF (R(K) .EQ. 0) GO TO 310 J = I	IMIN IMIN	
	PRILST(1) = R(K)	—in in	
300	K = K A 1	ININ	
310	WNDC (ED. 3) - 1	MIN	
	EQ = EQ + 1	MIN	
	APT = J + 1	MIG	
	CO TO 11C	MIN	
<u>c</u>		MIN	_ =
č	IF GO TO STATEMENT	MIN	
č	Ir do to Statenent	MIN	
730	KNPG:EQ.1) = 11	- Ain	
-20	PNPG(EQ.2) = R(1)	MIN	
	PRPG(EQ,3) = R(2)	HIN	
	PHPG(EQ,4) = R(3)	NIN	
	MNPG(EQ.5) = R(4)	MIN	
		MIN	
	EQ = EQ + 1 CC TO 110		
		MIN	
336	CEBLC = MNPG(1,1)	FIN HI4	
	RETURN CO 35C I = 1.16	- ININ	130
340	LU 375 * 1+16		
		1M 1N	
	NA(I) = S(I) S(I) = 0	MINI	
	STILL TO ALBETTARE OF TO 340	•	
350	IF (HA(1) .EQ. ALBET(1)) GO TO 360	IMIN IMIN	
	AA([+1] = C	MIN	
366	MARKY = 0		_
	CALL NAM(NA,K)	PIN MIN	
	PNPG(EQ.2) = K	- HIN	
	PNPG(EQ,3) = 401	MIN	_
	PNPG(EQ.4) = 1 PNPG(EQ.5) = 401	MIN -	
		MIN	-
	CALL RMYZER(3,K)	MIN	
	NPS = 3 IF (S(1) .EQ. ALBET(5)) GO TO 400	min Tin	147
330	IF [5]] .cg. ALBERTAL GU TU TU TU	#14 #14	
310	IF (5(1) .GE. ALBET(23) .AND. 5(1) .NE. ALBET(8)) GO TO 410	MIN	
	[0 3+C] = 1,5	imim Imin	170
		ININ	
	M(1) = S(1)	1min	120
	IF (S(1) .EQ. ALBET(S) .OR. S(1) .EQ. ALBET(10)) GO TO 390	1414	
3.00	· \$(1) = ¢		-
	S AA(1+1) = C	1818	
390	NA(K) = 0	MIN	174
	MNPG(EQ.NPS) = K	MIN	
	CALL RMVZER(S.R) IF (K .GT. O .AMD; NPS TET. 5) TGC TL 400	MIN	12/
	EU = EQ + 1	MIN	
	GO 1C 110	MIN	
400	7 SGN = 1	XIN	
	IF (S(1) .EQ. ALBET(S); SGN = -1	NIN	
	\$!1) = C	MIN	
	CALL RMYZERIS,KI	HIM	104

PER AND AND ASSOCIATED IN THE PARTY OF THE P

	APS = 5	MIN 156
	GO TO 370	MIK 167
410	AST = 0	HIN ISE
	DO 42C I = 1 ₅ K NA(I) = S(I)	IMIN 169
	WW(1-1) = C	14IN 170 14IN 171
	IF (S(1) .EQ. ALBET(45)) NST = 2	1#1H 172
	IF (SII) .GT. ALBET(12) .AND. NST .LE. DI GO TO 430	1MIN 173
	KST = NST -I	1#IN 174
420	S(1) = 0	1MIN 175
	CALL NAMENA,K)	MIN 176
	PHPG(EQ, MPS) = K	MIN 17.
	CALL RMV2ER(S.K)	MIN 178
	if tk .GT.C .AND. NPS .LT. 51 GO TO 370	MIN 179
	EQ = EQ + 1	#IN 189
440	CU TO 110	101 MIN 182 MIN
770	PRPG(EQ,1) = 2 PRPG(EQ,2) = R(1)	MIN 163
	EQ = EQ + 1	MIN 184
	GD TD 110	MIN 185
	END	MIN 186
		
	·	
	•	
——		
		
	•	

のでは、1000年代のでは

SUBROUTINE MANSET IMPLICIT INTEGER(A-U), REAL(V-Z) INTEGER+2 MNPG(1CC+6), PRILST(100), GETEST(100) COMMON /MAIN/ VR8(620), NAMS(400), MNPG, PRILST, GETEST, MAINM(200) INTEGER+2 EQU(10C.10.4) COMMON /MGD/ VARARY(620), RAMARY(400), EQU COMMON /MGD/ VARARY(620), RAMARY(400), EQU COMMON /MGD/ VARARY(620) VR8(1) = VARARY(1) ICO NAMS(1) = NAMARY(1) CO 110	MST MST MST MST MST MST MST MST MST MST	10 11 12 13 14 15
IF IPAPG(1.1) .EC. 0) GO TG (40 120 BRITE (3,120) (MNPG(1,J),J = 1.6) 130 FORMAT (7,614) 140 RETURN ENC	1845 1857 1857 1857 1857	16 17 18 19 20
		

	SUBROUTINE STOPODIPODKAP, PODRUP)	STM	1
	IMPLICIT INTEGER (A-U) .REAL(V-Z)	STM	ž
-	INTEGER+2 EQUITOC.10.41.PHTLST(50)	STH	- 3
	COMMEN /MOC/ VARARY[620], NAMARY[400], EQU, PRILIT	STM	4
	COMMEN /GEN/ ALBET(50)	STM	5
	CIMENSION ST(2C) MCDYAM(5)	- STM -	- é
	NS = MODNLM + 1	STM	7
	IF (MCDNAM(1) .NE. 1) GO TO 100	STM	ė
	IFIECULI,1,1) .LE. O) RETURN	- STM	9
	N5 = EQL(1.1.1) • 1	STM	10
	READ (5*N5) (\$T(1),1=1,20)	STM	11
	AREC = ST(6)	STM	12
	60 16 110	STM	13
100	REAC(5°1) NMOC.NREC	STM	14
	A4 = KREC	SIP	15
	SI(6) = MREC	STM	16
110	TYP = 1	STM	17
	EO 12C I=1.1CC.5	1STM	18
	1f(ECU(1.1.1).Eq.0) GC TO 140	151#	19
	S = 1 + 4	15TM	2C
-	haite(4*Naec) = GONLP. Typ. ((legulj. K.L). L=1,4). K=1. 10). J=1. S)	1ST#	21
	CO 12C J = 1.5	25T*	22
	EC 120 K = 1.10	35T#	23
	tg 125 L = 1.4	4STM	24
120	fQL(J,X,L) = G	4STM	25
	MREC = MREC + 1	151#	26
	ST(7) = NREC -1	STM	27
	TYP = 2	ST#	28
	69 ITE (4 "NR EC) MODNUM, TYP, (YARARY(I), 1=201, 300)	51#	29
	MREC = MREC + 1	STM	30
	bRITE(4*NRFC)MCDNUM, TYP, (VARARY(1), 1=301,400)	51#	31
	APEC = NREC + 1	STM	32
-	TYP = 3	STM	33
	BRITE 14 "NRECI MCDAUM, TYP, (VARARY11), 1 =401,500)	STM	34
	APEC = AREC + 1	STM	35
	TRITE(4 1475C) PCOALM, TYP, (VARARY(1), 1=501,600)	STM	36
	NREC = NREC + 1	STM	37
	1YP = 4	STM	38
	BRITE(4"NREC)MEDALM, TYP, (NAMARY(II), I = 1,100)	STM	39
	RREC = RREC + 1	STM	4C
	BRITE(4*NRECIPCONUP,TYP,(NAPARY(I),I = 101,200)	STM	41
	TAREC + NREC + 1	STM	42
	BRITE(4*NREC) MCDALM. TYP. (AAMARY(I). I = 201.300)	574	43
	AREC = MREC + 1	SIM	44
_	FRITE(4**REC**MODAUM, TYP, (NAMARY(I), 1 = 301, 400)	STM	45
	AREC = MREC + 1	STM	46
	TYP = 5	STM	47
	THE LITE (4 MIR ECOMODIUM . TYP . TPRIL STEED . E = 1 . 50)"	STM	48
		STM	49
150	AREC = NREC + 1 IF (MCOMAM(I) .EC. 1) RETURN	STM	50
120		- STP	51
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	151#	52
,	CO 16C 1 = 1.5	1512	53
160	SI(E) = MOCNAM(I)	STM	54
	RITE(5*45)(ST(1),1 = 1,20)	STM	55
	LRITE(S*1)AMOC, NREC	STM	56
_	RETURN	STM	70 57
	END	>**.	37

	SUBROLTINE MAINEN	MRN		1
	IMPLICIT INTEGER (A-U) .REAL(V-Z)	HRN		2
-	INTEGER+2 PNPG: 150:6) ,PRTLST(100) .GETLST(100)	PRN	_	3
	COPPON /MAIN/ V (620), NF (400), PNPG, PRTLST, GETLST, MAINM(200)	MRN		4
	COMMON /ALL/ VLST(50).POCNAM(30.5)	MRN		5
	COMMON /MOD/ VRB (620) , NAMS (400)	-NRM	_	6
	COPPON /COPPN/ STPCOP, STTREG, STPREG, COP(200)	MRN		7
	PRITE (3.100)	MRR		•
100	FORMAT (*1")	MRN	-	5
	CO 110 I = 1.STPCOM	IMAN	1	0
110	AM(I) = CCM(I)	IMRN	_	1
	IP = 2	- HAN		2
	VLN = 1.23459E-13	MRK		3
120	1F (MAPG(1P-1) .EQ. 0) GO TO 270	PAR		4
120	IGO = MNPG(IP.1)	- MRN-	_ =	5
		PRN		É
	CO 10 (130,290,280,150,180,140,140,140,200,230,140),160	MAN		7
	1P = 12 + 1	MRH-		8
	TO 120	MRN	_	9
130	CALL ITCHKIIP, CGA)		_	-
_	IFICON .EQ. CI IP - MNPG(IP,3) - 1	PRN - WOM-	_	C
	1P = 1P + 1	MRN	_	1
	CO TO 120	MRM	-	2
140	IP = IP + 1	MRN	_	!3
	60 10 120	. ASA .	_	4
150	FENUM * MNPG11P,2)	PRN	_	25
	CALL GETHOD(MD4LM)	MRN	_	6
	IF (PYPG(IP,3) .EQ. I) CALL CATAIN	- KSN	_	?7
	IF (MEPG(1,1) .EC. 1) WRITE (3,160) (MODNAM(MONUM,1),E=1,5)	MRN		8
160	FCRMAT (* *****,534)	MRN		9
	CALL RUNPOC	MAN.	_	:C
	IF (MMPC(1.1) .EQ. 1) CALL BUGPRY	KRN	3	1
	DC 170 I = 1.STPCCM	iprk	3	12
170	V(1) = V88(1)	"IHRN"	_3	13
	1P = IP + 1	MAN	3	4
	CO TO 12C	MRN	3	15
180	S = PRPG(1P.2)	- MAN	- 3	16
	SI = MPG(IP.3)	MRN	3	17
	K = 1	FRN	3	8
	CO 193 I = S.ST	-IMRN	- 3	9
	VIGETLST(1)) = VLST(K)	MAKE	4	0
190	K = R + 1	1KRN	4	1
• . •	10 = 10 + 1	PRN		
	GO TC 120	PRN		.3
266	S = MNPG(1P.2)	HRN		4
200	ST = MNPG(1P.3)	- HRN		Ş
	IF (MNPG([P-1:1) .ME. 1C) WRITE (3.210)	HRN		6
210	*CRMAT (/.5x, *CONTROL MODULE*)	FRN		.7
£ 10	PRITE(3.22C) (MMCPRILST(1)):4(PRILST(1)):1 - 5.5T)	PRN		8
220		CRN		45
226	FORMAT(5(5), 44, * = *, 1PE13.6))			
	19 * 19 + 1	urn Ver	-	50
	CC TC 120	NRN		52
230	150 = MAPG(1P,3)	MAN		52
	[F(V(MPG(IP, 2)).EQ. YUN.GR. Y(MPG(IP, 4)).EQ. YUN.CR. Y(PMPG(IP, 5))	PRN	_	: 3
	A .EQ.VUN) GO TO 300	- XXN	5	>

240 IP (VIMAPG(IP.2)).LT. V(MAPG(IP.4)))IP = V(MMPG(IP.5))-1 IP = IP +1	MRN MRN	56 57
60 TO 120	HAN	
250 IF (VIMPE: 19,21).EQ. VIMPG(19,41)) = VIMIPG(19,51)-1	FRN	55
IP = IP + 1	MAN	_60
GO TO 120	PAN	
260 IF (VINREGIP.21).GT. VINNEGIP.4))) P = VINNEGIP.5)]-1	押 交列	62
[P = [P +]	HRM MRM	- 63
GO TÚ 120	MAR. MAN	64 65
270 RETURN 280 IF(V(MNPG(IP,3)):50.YUN.OR.V(MNPG(IF,5)).E0.YUN) E0 TO 300	MAN	ŧŝ
VINAPGI (P. 27) * VINAPGI (P. 3) SOPAPGIT PATOY (PAPGITPES)	ARK	
IF (PXPG(19,2) .LE. STPCOR) YRB(PXPG(19,2)) . V(MAPG(19,2))	PRN	69
IP = IP + 1	MRN	63
GO 10 120	阿莱斯	76
29C IP = V(MNPG(IP+2))	Milh	71
60 TC 120	PRN	72
JOU CALL ERRUR(34)	PRN	
CALL POLMP(Y(1), PNPG(100.6), 0) RETURN	Pan Pan	74 75
EEC		76
		
·		
	1	
		•

SUBPOUTINE ITCHK(P.CON)	ICK	1
IMPLICIT INTEGER (A-U) - KEAL (Y-E)	ICK	- 2 -
INTEGER +2 M (1CO.6).PRTLST(100).GETLST(100)	ICK	4
COMMON /MAIN/ V(c2C) +N(4GC) +M+PRTLST+GETLST+MAINM(20)	ICK	
CIMENSION IT(2,10), VAL(10) IF(CON .NE7) GO TO 116	ICK_	5_
IF(CON .NE7) GO 10 116	1CK	6
En 166 I = 1+10	1 I CK	7
100 17(1,1) = 0	11CK	- 8
RETURN	ICK	
110 CO 120 I = 1,10	11CK	10
K = 1	11CK	11
IF (P.EQ.IT(1,1)) GO TO 150	IICK~	12
120 CONTINUE	11CK	13
CO 13C I = 1,10	11CK	14
K = 1	11CK	15
IF (17(1,1).FQ. 0) GO TO 140	11CK	16
130 CONTINUE	11CK	17
140 17(1,K) = F	ICK .	_
!T(2,K) = 1	ICK	19
CON = G	ICK	20
IF (M(P.21 SEQ. C) RETUKN	ick	
VAL(K) = V(M(P.2))	ICK	22
DETION	• -	
TS0 IT(2,K) = IT'2,K) + 1	ICK _	23
153 11(2,8) = 11(2,8) + 1	ICK -	
CON = 0	ICK	25
1F (M(P,2) .EQ. C) GO YO 160	ICK	26
AT ± AUCK)	ICK-	
V2 = V(M(P,2))	ICK	28
VAL(K) = V2	ICK	29
IF (ABS(V1-V2) LE. V(N(P.6)))CCN = 1	ICK	
16 138CTTV1=U217V21BTD -16. VTMID. 6111 COM # 1	ICK	31
160 IF (17:2,K) .GE. M(P,4)) CON = 1	ICK	32
IF (CON EQ. OF RETURN	ICK	_33_
IT(1, r = C	ICK	34
IT(2,K) = C	ICK	35
RETURN	TCK-	⁻ 36
END	ICK	37
	• • • •	
		

AND THE PROPERTY OF THE PROPER

SUBROUTINE GE(MOD(MN)	GTM	1
IMPLICIT INTEGER(A-U), REAL(V-Z)	GTM	2
INTEGER*2 EQ (100,10,41,PRTLST(50)	GTH	3_
COMMON /MOD/ VARARY(620),NAMARY(400),EQ .PRTLST	GTM	4
CIMENSION ST(20), MODNAP(5)	GTM	5
POCNAY(1) = 1	GTM	6
IF (EG(1,1,1) .EC. MN) RETURN	GTM	7
N5 = MN + 1	GTM	8
CALL STOMOC(MODNAM, MN)	LIM	· 6
REAC (5*N3) (ST(1)-1 = 1.20)	GTM	10
NREC = ST(6)	GTP	11
CO 10C I = 1,1CO.5	1GTH	12
IF (NREC .GT. ST(7)) GO TO 110	1GTM	13
S = 1 + 4	1GTM	14
READ (4"NREC) NAM. TY. (((EDEJ.K.L). E=1.4.7K=1.TO). J=T.S)		
100 NREC * NREC + 1	1GTH	16
110 REAC (4'NREC) NAM, TY, (YARARY(1), 1=201,300)	GTM	
NREC = NREC + 1	GTM	
READ (4*NREC) NAM, TY. (VARARY(I), 1=301,400)	GT#	19
NREC = NREC + 1	GTM	20
REAC (4 "NREC) NAM, TY. (VARARY(1), 1=401,500)	GTM	21
AREC = NREC + 1	GTM	22
READ (4 NREC) NAM, TY, (VARARY(1), 1=501,600)	GTM	23
NREC = NREC + 1	GTM	24
REAC (4 "NREC) NAM, IY, (NAMARY(I), I=1,100)	GTM	25
AREC = NREC + 1	GTM	26
READ (4'NREC) NAM.TY. (NAMARY(I). 1=101,200)	GTH	27
N'=C = NREC + 1	GTM	28
k 1 (4 NREC) NAM, TY, (NAMARY(I), 1-201, 300)	GTM	29
NR_ = NREC + 1	GTP	30
READ (4 NREC) NAP, TY, (NAPARY(I), 1=301,400)	GTM	31
AREC = NREC + 1	GIP	32
READ (4*NREC) NAM.TY. (PRTLST(1), (=1,50)	GTM	33
EQ(1,1,1) = MN	GTM	34
IF (EQ(2,1,1) .EQ. 1) GO TC 120	GTM	35
CALL ORCER(INO)	GTH	36
EQ(2,1,1) = 1	GTM	37
120 RETURN	GTM	3.8
END	GTM	32
		-
Constitution of the Consti		

SUBROUTINE MDNAME(NUM.NAM) IMPLICIT INTEGER(A-U).REAL(V-Z) COMMON /ALL/ VLST(SO).PODNAM(30.5) CIMENSION NAM(5) CO 110 I = 1.30	MDN MDN MDN MDN IMDN	1 2 3 4 5
NLM = [IF (MODNAM(I.1) .EQ. 0) GO TO 120 IF (NAM(1) .NE. MODNAM(I.1)) GC TO 110 CO 1CC J = 1.5 IF (NAM(J) .NE. MODNAM(I.J)) GC YC 110	IMDN 1MDN 1MDN 2MCN 2MCN	6 7 8 9
100 CONTINUE RETURN 110 CONTINUE CALL ERROR(23)	2MDN 1MDN 1MEN MON	11 12 13 14
#ETURN 120 CO 13C I = 1.5 130 MODNAM(NUM.I) = NAM(I) RETURN ENC	MDN 1MCN 1MCN MDN MDN	16
		_
		

SUBROUTINE TABLIN(S)	TIN	1
IMPLICIT INTEGER (A-U) - REAL (V-Z)	TIN	2
COMMON /GEN/ A(SC)	TIN	- 3
COMMON /MOC/ VAR (62C),AAM (400)	TIN	4
COMMON /TAB/ TABL(20.2)	TIN	5_
CIMENSION S(80), C(16), NSZ(3), V(600), X(100), V(100), Z(100)	YIN	6
MSZ(1) = 1	TIN	7
NS2(2) = 1	TIN	8
NSZ(3) = 1	TIN	9
C(1) = A(36)	TIN	10
C(2) = A(45)	TIN	11
C(3) = X(37)	TIN	12
C(4) = A(45)	TIN	13
C(5) = A(1)	TIN	14
CALL COMFNE(C,S,5,HH,PS,0)	TIN-	15
00 100 I = 1,80	1TIN	16
IF (S(I) .EG. 0) GG TO 119	ITIN	17
IF"(S(1) . eq. A(11)) EP"= 1 + 1	TITIN	18
100 IF (S(I) .EQ. A(E)) RP = I - 1	1T IN	19
110 AV = 1	TIN	20
[* C	TIN	21
CO 12C I = LP.RP	1TIN	22
[= [+]	1TIN	23
IF(S()[-5C- A(3)) S(I) = 0	TITIN	24
C(L) = S(1)	17 IN	25
IF (CIL) .NE. O .ANDP .NE. I) GO TO 120	1TIN	26
= (L+1) = 0	TITIN	27
CALL NUMSHP(C, VR)	ITIN	28
ASZINV) = VR	ITIN	29
4.6	- itin-	
NV o NY + 1	ITIN	31
120 S(I) = 0	ITIN	32
V1 = WA-1	TIN	33
hrite (3,130) MAM(MM).(MSZ(I).I = 1.MT)	TIN	34
the contract of the contract o		35
130 FCRMAT (//,5X,*TABLE *,A4,3X,*SIZE = *,T26,13,T30,13,T29,*,*,T34,	TIN	36
hRITE (3,25C)	TIN	
	TIN	27
CO TO (18C,160,14C) NT		38
140 FRITE (3,150)	TIN	<u> </u>
150 FORMAT (*+*,6%,*Z*)	TIN	40
160 hRITE (3,170) 17C FORMAT (*+*,19X,*Y*)	IIN	41
	TIN	
180 hRITE (3,150)	TIN	43
193 FCRMAT ("+",32x,"x")	TIN	44
NT = NSZ(1)+NSZ(2)+NSZ(3)	TIN-	-
NXT = NSZ(1)	TIN	46
NYT = NSZ(2)	TIN	47
NZ 1 = N3Z(3)	IN-	
REAC (1.2CC, ENC=3CG) (XTI).[=1.NXT)	TIN	49
200 FORMAT (3E10.5)	TIN	50
ERITE (3.250)	TIN-	
hrite (3,210) (X(I),:=1,HXT)	TIN	52
210 FORMAT ('+',27x,E(2x,1PEll.4),12(/,26x,8(2x,1PEll.4)))	TIN	53
IF (NYT .EC. 1) 'GO TO 220	TIN-	⁻ 54
PEAD (1,20C,END=300) (Y(I).I=1.NYT)	TIN	55

	IF (NZT .EQ. 1) GO TO 220	TIN	56
	READ (1,200,EN0=300) (Z(1),1=1,NZT)	NIT-	- 57 - 58
~~	0 AS = 1 MST = MXT	TÎN	59
	hetre (3.250)	TIN	60
		TYIN	
	IF (NY .GT. 3) WRITE(3.240) 2(1)	ITIN	62
		ITIN	63
		ZTIN-	- 64
	0, 1,10 10 10 to 10 10 10 10 10 10 10 10 10 10 10 10 10	2TIN	65
	REAC(1,200) (V(K),K=NS,NST)	2TIN	66
		STIN.	
	V2 = V21 + T	2TIN	69
		2T IN	- 69
24	A 1000 Mt 1138444 FXEE11	2T IN	_
	• • • • • • • • • • • • • • • • • • • •	2TIN	71
		2TIN 2TIN	72
20	N = 1	TIN	74
		17 IN	75
		ITIN	-76
	IF (TABL(I.1) .EQ. NAM(NM)) GO TO 290	ITIN	77
27		1TIN	78
=	CALL 2RROR(27)	TIN	79
28	O TABL(K.1) = NAM(NM)	TIN	80
	TABL(K.2) = NV	TIN	£1
729	O IF (TABL(K)2) .NE. NV) CALL ERROR(28)	TIN	
	hrite (6'K) NT, NXY, NYT, NZT, (V(I), I=1, NT), (X(I), I=1, NXT), (Y(I), I=1		83
	A .NYT), (Z(I),I=1,NZT)	TIN	84
2/	RETURN	TIN	
30	O CALL ERROR(30) RETLEN	TIN	86 87
	TND	TIN	-

	SUBROLTINE INTERP(VI.NX.NY.NZ.VT.VX.VY.VZ.VRET.NZ) CIMENSION VI(3).VT(NX.NY.NZ).VX(NX).VY(NY).VZ(NZ)	INT INT	1 2
	CALL GETIND(VI(1),VX,NX,NXI,VXD,A2,TT	INY	5
	CALL GETING(VI(2).VY.NY.NY1.VYD.N2.2)	INT	4
	CALL GETIND(VI(3).VZ.NZ.NZ1.VZD.NZ,3)	INT	5
106	WRET = VT(NX1,NY1,NZ1) + VXD+(VT(NX1+1,NY1,NZ1)-VT(NX1,NY1,NZ1))	THY	- 6
	IF (KY .LE. 1) RETURN	INT	7
	VPTI = VRET	—INT —INT	•
	NY1 = NY1 + 1	INT	10
	VRET = VT(KX1, NY1, NZ1) + VXD+(VT(NX1+1, NY1, NZ1)-VT(NX1, NY1, NZ1))	INT	11
	KY1 = NY1 - 1	TINT-	-iż
	VPT2 = VRET	INT	13
	VRET = VPT1 < VYC+(VPT2-VPT1) IF (N2 .EQ.1) RETURN	INT	14
	IF (NTM .EQ. 1) GO TO 110	INT	
	VPT3 = VRET	INT	16
	NTM = [INT	. 17
	NZ1= NZ1+ 1	INT INT	18
	GO TO 100	INT	20
110	VRET - VPT2 - VZC+(VRET-VPT3)	- INT	
	RETURN	INT	22
	END	INT	23
		• • •	
	•		
			_
		····	

SUBRCUTINE GETIMBLAD. VA.NT.N.VI.NTAB. MVAR) CIMENSION VA.(NT)	GID	1 2
COMMON /TAB/ TABL(2C,2)	-GID	
IF (NT .GT. 1) G9 T(100	GID	4
# * 1	610	5
VI = C	_G16_	-6
RETURN	GID	7
100 IF (VD .LT. VA(1) GR. VD .GT. VA(NT)) GO TO 130	GID	8
CO 11C T = 2.41	TGID	ŝ
N = 1-1	1616	10
TE THE LE WATERS OF TO TO	1615	11
TIO CONTINUE		-12
120 V[= (VD-VA(N))/(VA(N+1)~VA(N))	GID	13
RETURN	GIC	14
13C (ALL ERROR(29)	- 610-	
hRITE (3,140) TABLENTAB, 13, NVAR, VD		
140 FORMAT 17 TABLE NAME = ".A4;" VARIABLE NO =".12." VALUE WAS ".	GID	15
	GID	17
A 1PE13.61	G1D_	
N = NT-1	GID	19
IFEVE .LT. VA(11) N = 1	- 510 - 310	23
· · · · · · · · · · · · · · · · · ·		
ENC	CID	22
•		

THE SECTION OF THE PROPERTY OF

	SUBROUTINE BUGPAT	BUG	1
	IMPLICIT INTEGER (A-U) .REAL(V-Z)	BUG	2
	COMMON /MOC/ VARARY(620), NAMARY(400)	8US	3
	COPPON /COPHN/ STPCOP.STTREG.STPREG.COM(200)	BUG	4
	J = C	BUG_	5
	DO ICC I = 1,STPCOM	IBUG	6
	IF (CCM(I) .EQ. C) GO TO 110	18UG	7
	J = 1	_18UG	. 8
110	TF (J .Eq. 0) GC 10 130	BLG_	5
	EXITE (3,120) (COM(I), VARARY(I), I = 1, J)	8 UG	10
	FORMAT (COMMON VARIABLES	BLG	11
130		BUG	12
	CO 1.c I = STIREG,4CC	184G	13
	IF (NAMARY(I) .EC. 0) GO TO 150	18UG	14
140	J = {	_ 18CG	15
150	IF (J.EQ. 0) RETURN	BUG	16
	brite (3,160) (NAMARY(I), VARARY(I), I = STTREG, J)	BUG	17
7160	FORMAT IL NON COMMON VARIABLES TO 15 (5X, A4, F = ", IPET3.61/11"	BLG	18
	RETURN	BUG	19
	END	BUG	2C
-			·
			-
	· · · · · · · · · · · · · · · · · · ·		
			
			
			
			_

APPENDIX II MODEL LISTINGS

STATES OF THE PROPERTY OF THE

AND THE PROPERTY OF THE PROPER

UTILITY MODEL COMMUN. GhomFilonFiloMF12.ERR COMMUN GalagadapLO.mPL1 CLM43. PTO. PRA.SFG للغمول مناكلك CIMAUN MEMOIP, TAS, NEN, YAR, SL, NODPL, NCR, HFL . CPH. PKA, JUN, MEM COMMON K.PTU.SFO.F CEMALE IBOX LISC ALL GAT COMACH IUAA, IUXO COMMUN MPLZ PILAL ONE RUN AUD SIZE GHH = GM FUN HULL TO ALLOWANCE AND CRUISE SOME AND HAY HAD PUN HOU TOTAL FUEL Gr. F var RUN SUD STAT WEIGHT FUN 400 UNDSS MEIGHT ITERATE DA LAS FROM ONE. ATOL = 20 *fll = aft RUN MUD STOKE OLD DATA PELAL ALTADAT PRINT UM. NEM . AFL. APLO. PTC . PRA. SFC POINT PUAT POLIT PALT FUN MUU NEW SIZE DATA 11E = 0 Palal Iau BUN MOU SIZE SaH = Ga BUNLAUD I H ALLOHANCE AND CRUISE BONA HOU MAX RANGE FUN MOD TOTAL FUEL FUN FUU AHAL «EIGHT Gh2 = 60 PUN MUU GRUSS WEIGHT THO 6=1 = 6= GaH = Ga FUN PUD T U ALLOWANCE AND CRUISE FUN HUD MAX RANGE PUN POD TOTAL FUEL Ga = UNH WFL1 = MFL HUN HOU FAYLUAD S= = 6 m2 PUN HUD ERKUR 119 = 174 + 1 IF ITH IS GT MATR, GO TO THRE IF EAR IS OF 20, GOTO THE POINT THE PPINT ALIQUATITE PRINT GHI.SAEMZ.AFLI.MPLI.PTC.PRA.SEC DP1.1 UMZ. MFLZ. WPLZ

DGh = Gm2
CPL = mPL2 RUN HJD PAPC COSTS RUN HJD PAPC COSTS RUN HJG JMAX FINC MAXIMUM VALUE FOR J - JHAX = U/UPH
\$ I = 0 \$0CE = 0 POINT FOUR
\$1 = \$1 + 1 Fun =uD Fraylgads ITAT = U
POLAT FIVE PUN XUD ComS GNH = GN
RUN MOU I O ALIGHANCE AND CRUISE FUN MOU MAX HANGE PUN MUU TOTAL FUEL
Gh = UaH TAT = TAT + ITES ATE Un anti-PIGL=1.FECP FIVE
RUS MOL MAINT COSTS ROSS MAYOR COR MUS ROSS MAYOR C
PRINT SUCE. MEI.SCHEM.: PUF. SPHUV. SPL. SGW. SCLF IF an iout slogd to four IDAA = IDAA + 1
ITERATE PRUM POAT, TIMES = 2

```
10xJ = 1
IDYA = 1
MXTx = 25
*P = 1000
IAS = 150
YAR = 40
St = 10
4 = 5
-CR = 400
JPH = .1
45H = 100
TABLE NAME = EUF.SIZE = (2)
Ω
         1.5
TABLE NAME = SELT . SIZE = (4)
17.2 E+03 60.0 E+33 10.C E+C4 25.5 E+04 54.0 E+04 10.0 E+05 20.0 E+05 44.0 E+05
12.5
      عدوعه
                                    E-045.75 E-045.0
                                                                     E-245.5
      t-03 1.35 E-031.2 E-038.5
                                                          £-045. E
1.5
3. 1887 E+5 1.11046+7 1.0
      E-2 6.942 E-3 2.964 E-3 2.237 E-3 1.819 E-3 1.274 E>3 8.0
1.2
7481 - NAME = PUB-5175 = 121
          1.5
3
          .33333
. 33333
148: - 534- = 1833.512E = 1141
                                                                         £000.
          506.
                     1000.
                               2000.
                                          3000.
                                                    4020.
                                                               5000.
                                          11000.
                               1820€.
7000.
                     9000.
                                                    12000.
           ಶಚಿತ್ರಿಕೆ
          فقمكو
                     44.64
                                =3.25
                                          42.5
                                                    عڪملاءِ
                                                               39.56
                                                                         27.72
43.46
                                          12.75
                     25.67
                               21.11
35.63
          25.4
                                                    12.5
143Lc HAME = 1140.51 (5 = (14)
         .296غمـــ
                     <u> 6809</u>
                                                     بزواله
                               £2266
                                                               .5552
                                                                         المكف
٥٤٤٠ ،
           24025
                     . 5792
                                .9915
                                          .9996
                                                    1.0
                     1000.
                               2000.
                                          3000.
                                                    4300.
                                                               5400.
                                                                         £000.
          Suus
                                          11000
                                10001
                                                    ولايمشد
مدنالد?
           عضائه لوثير
                     Sagos
TABLE NAME . FYLD.SIZE 2 (11)
                     3.0
                               4.0
                                          5.0
                                                    6.0
                                                               7. Ú
                                                                         e.0
1.0
          2. u
C.Q.
           10.5
                      11.6
                     30.0
                                100. C
                                          110.0
40.0
          50.₺
3.0
                                4.0
                                          5.0
                                                               7.0
                                                    t.c
                                                                         5.0
1.0
           2.5
                      11.0
=.6
           10.4
                                          5,0
           25.0
                     30.0
                               <u> 35. û</u>
.lfev
TABLE NAME = TPRO-SIZE = (24.14)
                                          -3.8¢
                                                                         25.67
                               _-5.67
-23.23._
7.22
                   -17.79
                                                    -1.11
                                                               1.63
                                                               23. ac
                               15.56
                                                    21...
           16.0
                     12.76
                                                               45.11
                                                                         49.89
                     35.0
                                37.78
                                          40.55
                                                    43.33
29.44
           32.22
                                                    وليون4
                                                                         £000.
                     100C.
                                2060.
                                          3900.
                                                               50000
           Suc.
                                1000c.
                                          11000.
                                                    Levida
7000.
           5034.
                     9000.
                                                                         a
                                                               ù
                     e
                                2
                                          Ω
                                                    Ω
Э
                               .05e E
                                          .0755
                                                               .1444
          د 21 در و
                                                    . 1J~U
                                                                          .2147
. 30%
                     .0373
           .5143
                                -9697
                                          .0416
                                                    .7610
                                                               `$$7T
                                                                         1.0
                     .723E
 . 3242
                                C
                                          0
                                                    ð
                                                               ŭ
                                                                         .0062
           0
                     Ω
```

WESTERNIA TO THE STATE OF THE S

.0138	.0271	.0425	.0665	.0925	•1<51	-1642	.2817
4117	5767_	7302	.8535	9340_		iau	1.0
0	0	0	C	0	٥	Ð	.0053
·0115	يككن	.C362	.0357	.0530	• 1 250	.2543	-3158
ــفقئكمِــ		7524_	<u></u>	سلاد 'هــــــ	<u>2</u> 56il	<u>t</u> a #	<u>l.0</u>
0	0 •0297	0 _045C	C •0726	6 -1076	0	0	.GC80 .4295
• 6794	-0297 	-0450 	•929č	2743	.1650 970u		
<u>v</u>		0	0		9,500 . 0	.00°3	
20233	.0414	.0636	.1055	.1497	.2524	.3730	-3280
4791	0048	.6930	.9475	9857	1.0		1.0
0	U	C	C	0	0	.3350	.0149
·03JS	.0535	. C244	-1382	.2149	.3270	.4092	•€252
2556	<u>. 6568</u>	- \$26Ē	9712	1.0	11	laie	
0	IJ	9	C	0	0	•4~93	• 6200
• 0400	•0¢70	-1163	.1396	-2907	-4195	.5557	.6746
4043	<u>ب</u> عة	9417	- 4303			او الم	
3	0	9	C	9		•0120	•C262
.0443	.3321	•1473 <u>•9542</u>	.2410	.3697	-5200	3306	.7633
0 0	<u></u>	0	<u>la0</u>		laU UU54		
• 059é	-1241	.2141	.35、\$	•5224	•6852	-797¢	.5563
.9327		cclc	1. C		leu	i.v	1.0
0	•	0	C	O	• 0053	•0102	-9561
. 1296	-2151	.3367	.5046	.6751	• 6Je7	.5763	.9355
. 6639	9837	1.6	1.0	1.0	lo U	l_G	1.0
0.	ŷ	ð	C	-3055	•∪3≟5	•1349	. 2663
• 4235	+6C5e	.76=3	.9244	.0704	.9966	•9983	1.0
_140	نعملِ	lQ	<u></u>	1.2	lasi		ـــــيومدـــــ
0	0	3100°	.0144	.0640	•2631	732د.	.5186
.5777	.5531	. 0542	4954B	.9976	l.u	1.0	1.0
1-0	ie k	.058£	1.0 1420	1.0 2892	leu -4277	<u>leb</u>	<u>1.0</u>
-9281	-9790	.9998	1.0	120	1.0	1.6	1.0
1,5	1.3	1. G	1.0	1.0	ز. ا ز. ا	1.0	1.0
	+07	.078	** ± 0C	.5egg	736	.7900	.8600
.9500	.7500	1.0	1.0	1.0	1.0	1.0	1.0
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
TABLE	mame = 12.2		4)				
	1.0	E-32.0	E-3 3.0	E-3 5.0	€-3 7.0	£-3	
4.C	6. C	- F.C	10.0				
425.3		£-467C.C	5-463G.C	£-4494.0	E-4700.J	£-4	
*12.3		E-4585, (E-4611.C	£-4642.0	5-430300	E-4	
455.3		<u> </u>			_ _650.0 		e-
	HAME = MAP			£- - 23040	E1100J	 4	
	1.0	_6-3 3.0		£-3 5.0	E-3 7.u	£-3	
4.0	6.3	3. G	10.0				
66.0	58.0	52.0	47.0	41.0	35.0		
94.0	65.3	42.0	57.0	50.0	45.0		
93.U	79.0	65.0	£4.0	55.0	£1.0		
116.0	88.4	76.0	63.0	50.0	€3.∪		
Tafle	NAME = TAS			حد لاستهام		, ,,	
	3.0		E-33. C	5-3 b	セーコフ。び	₹-36.6	E-37.0 E-
4.0	6. J	3.0	10.0				

的一个,这个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们是一个人,我们

. 96	•065	.07	.075	•08	وں.	.io	•12	
14	16	_ 418	20				• • •	
				<u> </u>				
26.J	92. ű	73.5						
54.1	iulau		68_5					
42.∃	111-2	£1.5						
3.1	56.4							
37.d		<u></u>			59a2			
£2.0	112.0	93.c	31.2	72.3	62.0			
£9.0	122.0	64.0	79. R					
- 				<u> </u>	<u>45</u>			
46.4	113.1	94.8	53.4	75.3	70.1	65.1	60.0	
49.U	125.6	102.5	29.0 20.5	80.3	73.6	67.5	62.4	
72 <u>.5</u> _	165.6	10540	ــ جوزع ــ	79.2		58•\$		
10.0	90.0	90, 3	7320	57.3	£2.5	57.0	\$3.0	
53.2 75.u	120.2	102.0	<0.5	92.2	76,0	71.3	£7.5	
			<u></u>	96.5		<u></u>	79.2_	
75.5	i36.2	111.8	55° è	86.5	78.0	72.5	67-1	
19.2 39.1	59.J 	97.6	50.0	74.5	70.e	25.0	52-1	
*9.J		103.C	56.2		<u> </u>	70.5	72.5	
78.0	148.0	116.C 117.5	101.4 102.5	91.7	85.0	50.0 76.8	75.5	
34.5	148.0	SC.5		92.4	54.3	75.5	73-8	
49.4	136.8	118.2	53.7	84.A 67.0	<u>Euau</u>	<u>76.0</u> _	72.5	
25.5	146.5	125.5	105.2	97 . 0 100 . €	90.5	o~•8 67•7	21.0	
1.5		127.5	111.5	191.5	93.1 92.7		93.4	
45.2	126.2	109.5	59.6	92.7	87.4	37.2	<u> </u>	
77.7	146.1	126.2	113.C			0•خة ع		
<u> </u>	150-1	133.2	115.C 115.2_	104.3 108.7	97.>	95	97.4 #9.4	
E 3. 5	157.5	134.3	119. 8	10%.8			83.8	
61.3	143.1	:24. 8	112.5	104.0	-7.5	94.5	90.5	
91.1		135.E	125. E_	116.9			90.5 97.8	
99.5	109.4	146.2	130. 9	119.7		104.9		
A6.0	104.5	146.C	131.5	120.5	111.5	104.5	98.7	
73.:		:36.2	_ 125.7	115.4_	110.0_		99.2	
02.5	173.5	151. C	130.2	120.0	115.3	111.3	104.0	
G6. e	lêc.u	154.6	140.6	12°.0	120.0	114.2	107.5	
ون	ics.5	151,5	139.5_	129.5_	115.0	112.7	107.0	
4.8	161.7	144.2	134.€	125		11405	107.0	
11.0	162.5	146.0	145.0	133.5	125.5	115.0	113.5	
13,4	157.3	145.4	140,5	137.0	12000	121.3	114.7	
¢2.3	170	15667	144.5	135.0	125.3	115.7	114.7	
ಳಕ್ಕ್ನು	170.1	155.5	142.2	133.0	125.3	115.3	113.5	
19.0	129.	167.5	152.5	141.0		146.0	120.7	
10.5	152.5	171.6	155.5	143.6		127.2	120.1	
96.J	174.0	155.C	149. C	135.0	129.2	.22.4	117.3	
00. J	175.3	_1:2.4	149.0	139.5	134.5			
25.0	196.0	174.7	15¢. C	147.0	130.2	131.5		
25.3	196.0 198.6 176.0	177.1	161.6	149.3	140.1	132-1	124.8	
96.5	170.0	161.5	150.5	141.0	ن دد د		120.5	
ABLE NA	ime = 143,5	:iZt = {	5,1 01					
	1.3	-3 2.0	E-33.0	E-34.0	E-3 5.0	£-3c. u	E-37.0	٤.
.0	0 e C	a. r	10.0					
0.0	83.0	90.0	130. €	110.0	120.0	130.0	14C.0	
50. U	160.0						· · ·	

HERE STREET STRE

一般のおけるできて、ここしに

```
+29.J E-4065.0 E-46CE,0
                                         E-4755.0
                              E-4731.C
                                                    5-4300.0
                                                               E-4635.0
                                                                          6-487169
 25.0 E--500.0 E-4591.C E-4430.0
                                        -E-6A63.D
                                                    £-6793,0 .
                                                               £=+736.0
                                                                         . E-4773.0 _ E-4
 50±00
                   E-4571.C
        t-4335.0
                              E-4601.C
                                         E-4:43.0
                                                    E--470.J
                                                                          E-4749.0
                                                               E-714.3
                                                                                     É-4
                   £-4590.C
 521.0
        £-4550.0
                              E-4626.0
                                         E-46(3.0
                                                    E-4698.U
                                                               t +755.0
                                                                          E-4740.0
                                                                                     E-4
 ....
        E=4095.U 1-4748.C
                              E-4900.C
                                         E-4350.3
                                                    £=4culou
                                                              _5=455x.0
                                                                          5-210064
 $20.J
                   E-4423.6
        £-4570.0
                                         E-4733.0
                              E-4675.0
                                                    E-4775.J
                                                                          E-4500.0
                                                               E-4644.3
                                                                                     E-4
 496.3
                   £-4590.0
        £-4530.€
                              E-4643.C
                                         E-440F.0
                                                    E-475u.J
                                                                          E-4853.0
                                                                                     E-4
                                                               モーマッシリ・コ
 464.0
                              E-4051.C
                   £-4500.C
        £-452 Lou
                                         E-4704.0
                                                               £-46.4.0 _
                                                                          E-4848.0 _E-4
                                                    E-4701.0
 ن.0-3
                   £-4410.0
        £-4740.U
                              E-4803. C
                                         £-4965.0
                                                    £-41070.
                                                                          Ē-41193.
                                                               c-villi5.
                                                                                     E-4
 520. U
        E-+554.0
                   r~4691.C
                                         E-4=21.0
                              E-4745. E
                                                    E-4845.u
                                                               5-4570.3
                                                                          E-41049.
 <u>478. u</u>
        E-4630.C
                              E=470=. C
                                         E-4743.0
                                                    £-492600
                                                                          E--1013.
                                                               E-. 534.0
476. U
                   6-4-26.C
                                                      -<del>-</del>-3333.0
        E-4551.U
                              E-4734.C
                                        E-4770.0
                                                               =-+5+==3
                                                                          £-4 t020.
                                                                                     E-4
 706.0
        £-+6J2.0
                   E-4903, C
                              £-41604.
                                         E-41104.
                                                    E-412us.
                                                               t-+1317.
                                                                          E-41419.
                                                                                     E-4
        £-4020.U
                   £-4736.C
                             _E-4837.C E-4930.0
E-4739.C E-4893.0
                                                    E-41043.
F-41000.
                                                                          F-41241.
                                                               c-41153.
                                                                                     E-4
475.0
                   E-4655.C
        E-4560.0
                                                                          E-41220.
                                                               E-4.63.
                                                                                     F-4
        E-4563.0
 454.0
                   E-4673.0
                              E-4778.C
                                         £-4553.0
                                                    (-41000.
                                                               £-41145.
                                                                          E-41223.
                                                                                    E-4
 784.4
                   £-41002,
                             E-41125.
                                        E-41273.
        <u>5-4504e0</u>
                                                    £-61000.
£-412300
                                                                          f-41433.
F-41505.
                                                               ÷-+15-5.
552.0
                   £=4816.¢
        E=908ú.u
                                                               E-1377.
4=0. J
                                                    £-41;co.
        E-4513.0
                   E-4752.0
                              E-4#83.E
                                         £-41939.
                                                               . حرد الرجاء
                                                                          F-41444.
                                                                                    F-4
£50a3
                   £=4735.C.
        E-4556.0
                              .E-4590. Q
                                         E-41019e
                                                    £-41104=
£-41c+=•
                                                                          £-41472.
                                                               . م دُدد ، خ-ع
 505.0
        E-4972.U
                   t-41128.
                              E-41235.
                                         £-41474.
                                                               £-41153.
                                                                          £-42015.
 50. ∪
                   E-4921.C
                              £-41105.
        E-4748.U
                                         E-41260.
                                                    E-41456.
                                                               t-+i6∠2.
                                                                          E-41795.
                                                                                    E-4
د ع<u>ي</u>
                   2.35.4
        $24263aV
                              £_41013._
                                                                          E-41520A
                                         £-41204.
                                                    £-41,05.
                                                               E-4825.C
400,0
        ヒーもうっぴっぴ
                             E-41019.
                                         E-41203.
                                                    E-41414.
                                                                          £-42030.
                                                               c-41c.20.
                                                                                    E-4
£-3. u
        E-41065.
                   E-41288.
                              E-41497.
                                         E-41720.
                                                    E-4195..
                                                               E-- Zie!.
                                                                          E-42370.
                                                                                    E-4
 415.0
        <u> روز د دوخت څ</u>
                   5-41273.
E-11180.
                                         E-41503.
E-41421.
                                                                         F-42223a
505.3
        c-4733.0
                  t-43 . C
                                                                          E-42220.
471.0
                                         E-41443.
        E-+700.0
                   E-4934.C
                              E-4117G.
                                                    E-4101.
                                                               E-42273.
                                                                          £-42730.
                                                                                    E-4
CEL U
        1-411550
                   1-41414.
                              £-41753.
                                                    E-42493. E-42563. E-410000.
E-41330. E-4220. E-410000.
                                         ن وزد ۽
        E-4935.u
                   5-41205.
                              E--1510.
                                         E-41744.
€33.J
        E-4613.U
                   =-41101.
                                         £-416=0.
                              £-41335.
                                                    E-41950.
                                                               t-42343.
                                                                          €-410300. E-4
401av
                   E-41105.
                                         E-41920.
E-42378.
        =<del>-4763,</del>0
                                                    E-42530._
                              £-41515a
                                                              .5-43143._
                                                                         1045.
                   £-41682.
        £-413c5.
                              E-42340.
                                                    E-42:20
                                                                         E-419330, E-4
                                                               t→ZŦil.
?24. U
                   E-41397.
        モーチェロチラ・
                              E-41762.
                                         E-42011.
                                                                         E-410000. E-4
                                                    E-42303.
                                                              £-42022.
د۲٥٠٠
                                                    E-423=00
        F-+52lev
                   £-41440.
                                         £-+2330.
                                                             _ 6-42720.
                                                                          423. J
                   €-41353.
                              E-41960.
                                         E-42527.
                                                    E-4317-.
        E-4851.U
                                                              t-41000. E-419000. E-4
        E-415&...
                   F-41933.
                                         E-42720.
1163.
                              E-42343.
                                                   E-43217.
                                                              E-410000. E-410000. E-4
=05. U
        2-41.05.
                   E-41500.
                              E-42040.
                                         E-42500.
                                                   E-43000 : -4:0000 : -410000.
E-47000 : -410000 : E-410000.
63R.J
                   E-41475.C E-41730.
        モー4にゅうさ・
                                         E-42430.
                                                              t → 10000. E-410000.
                                                                                    5-4
e 90.
        E-41váta
                   E-41876.
                              E-43000.
                                         E-410000, E-410000. E-410000. E-4
THELE
      MAME = SECP . SIZE
                           = (19)
           .25
                                 •35
. 2
                      . 3C
                                            .40
                                                                            .55
                                                       .45
                                                                  .5:
• +
           .65
                      .70
                                 .75
                                            . 90
                                                                            .05
                                                       .35
                                                                  .50
1.0
           2.12
           1.92
                      1. 52
                                 1.40
                                            1.32
                                                       1.25
                                                                  1.20
                                                                             1.16
                                 1.05
1-15
           1.13
                      1. CS
                                            1.04
                                                       1.03
                                                                  1.02
                                                                             1.01
1.0
           1.3
```

MUDULE NAME = SIZE	
COMMON GRAPIU PRASED C. E.R. NEN.	S.CR.NWR.TS.DI
COMMEN VRC.PM	MANUALU, N. 3.1 of 3 MA.
COMMUN ALT.UAT	
_CDM40Is_RM+4U++VM+HP2+HP1+EA	
PF = (1-ALT/145300) **5.255	PRESSURE RATIO
TF = (UAT+273.16)/288.16	TEMPERATURE RAYLO
OF = MKATR	
	<u>UENSITY RATIO</u> 4E-5*VRC*GH)/(1-PM/1UU) PUNER AT TANEOFF
PRA = PTO/(PR*(1-2.09*(TP-1)))	TOTAL ENGINE RATED HP
SFD = 1.130=(rh4/NEN)+=105	SFL AT RATED HY
0 = 310*PTU*TS**-1*5#** 5*CL**	
F = .J35*Gn**.657	CURRENT UTILITY HELD M/C EXTERNAL STORES
R = .5642+69 ** .5+DL **5	MR KADIUS
S = DL/BL SCLIDIT	
•	MAIN RCTOR CHORD
RM = R	TATA ROTOR CHORD
MCW = GW	
VM = TS	
HP2 = PRA	
HP1 = PTO	
ER = NEN	
the - legis	

	ALT	= 4000, 10000	CAT=35,	VRC=5CC.	P#=5,	NEN=2.	CL =	8,75	= 700			
	BL =	80										
					·							
, <u></u>												
		·-····································	, ———, <u>———————————————————————————————</u>									
												
				<u></u>								
							 .					
						·						
					·			·	,	··- <u>·</u>		
				·	·		 .	,,				
	·											
												
												
				······································					137 Part, angles			 -
						·						·
		•										

MODULE HAME * T O ALLOWANCE AND	CRUISE	
LCMdus tampksPhAstsPIDsDLSC saffa	SFO	
MITT NORMOS		
ALT = 0		
TIM = 8 WFL = 0		
PP = (1-ALT/145300) ***. 255	PRESS RATIC	
E1 = 0.15 + PAA + PE + TIP/50	FUEL INCR	
WFL=atL+FL	TOTAL FUEL USEC	
GW = GM-FL	FINAL GH	
Tria = Tim		
ALT = 4000		
1AT = 35		
SM = 10	· · · · · · · · · · · · · · · · · · ·	
KPP = .9174 DIS = 50		
JAS = 130		
PA = .9		
PR = (1-ALT/145300) **5.255	PRESS RAILC	
	JEPP PATIC	
	DENS. RATIO	
DLN = Gm/(3.1415*P**2*OR)		
PA = PH491Ph+11-2.08+11E-1111	PAXA_HPA_AVAILA	······································
	DRAG-LEIGHT PARAM	
P = PA + RA		
IE P IS GT PID:P=PID SAS = 7J-SM+15:7*(15-DLN)/((FCM	*10001+* 25003	CTALL WINE
TAS = SAS	-1000125-87	STALL KIAS
IF TAS IS OT 160. TAS = 160		
POW=TABLE PRE(FOR, DLN, TAS)		
PFO = PUm * Gm/KPP		
IF PAU IS LT P.P = PRO		
POW = P * KPP/UM		
TAS = TABLE TASIFON DLN PChy		
PHF = P/(PR+1x++,5+PAA)		-
SSF = TABLE SFLP (PPF)		
FL = TIM + P + SFO + SSF/60		
HFL = WFL+FL		
Gh = Gm-fL		
TTIM = TTIM + TIM		
		-
· ····································		
		

MCDULE NAME = MAX RANGE
COMMUN unare PRAS ESPTOS DISCONFL SFOONEL
COMAIN ITIM
INITIALIZE SAR=0.TAS=8C.DEL=5.FL1 = 0
INITIALIZE TIMI = 0
ITERATE ON TAS, ATOL = 1 A/S FOR MAX RANGE
PR = (1-ALT/145300) ** 5.255 PRESS RATIO
TF = (0AT+273.16)/208.16 TEMP. RAIIC
OF = PR/TK DENS. RATIO
DLN = Gm/(3.1416#R##2#DR)
PA = PRASIZECTI- 2.03*(TR-111) PAX. HP. AVAIL.
FOW = F+DR/Gm DRAG-SEIGHT PARAM
P = .5*PA
POW=TABLE PRE(FOW+DLN+TAS)
PRQ=PU=*G=/KPP
PPF=PRU/{PRA+PR+TP++.5}
SSF=TABLE SFCP(PRF)
SAR1=SAR
SAR = TAS/(SSE*SED*PRO)
DSAH = SAR - SAR1
SAS = 7U-SH+15.7+(15-DLN)/((FCh+1000)++.2598) STALL KTAS
IF TAS IS GT SAS DEL = 0
IF USAR IS UT U.TAS = TAS+GEL
TIM = 60 + DIS/TAS
FL = 11M + PRQ + SFD + SSF / 60
nft = mft + ft - ft1
FL1 = FL TTIM = TTIM + TIM - TIM
TI:1 = TIN
12.2 - 120

			
ALT = 4000 OAT = 35			
SM = 10 KPP = ₀ 9174 DIS = 160			
			•

MODULE NAME = TOTAL FUEL	
COMMUN_MFL_CAP FL = (RCP/100) * WFL * (1-(RCP/100)) MFL = WFL * FL CAP = MFL * FL	

		
RCP = 10		
•		
		
	-	

```
MODULE NAME = STAT WEIGHT
_1.COKDER_
CCMMUN KM. MUA. VM. HPZ, HP1. CAP. EN. S. CH. NMR. BODY, NCR. WEM
CCMMON TAIL, ALGI
ركاء دكتم بلاله ٢٠٦٠ م
WENG = 1.3904EN#(HP2/EN1++.733
HBL = .15164*1(NGH*NULT/1CC)/(2R**.999*VM **./31*0*NR**.65*NOF**.411)
                                                                                BLADE WT
NGH = 2-1459Aux = 9-693 ____ BLACE HEIGHT_SUPPORTING CALCULATIONS __
R = 2 * KM
42 = 8**2/46
                            BLADE ASPECT PATIC
AR = RM+CC+NME
                       TOTAL BLADE APEAL SC.FT.
DMNR = DMONA
                     DISC LCACING . NUMBER OF ACTORS
D" = MOm/3.141592/R 4002
                                    DISC LOADING
YOF = 14,259 $ $ 400
WHUS = .uluwe(nEL+.5=RP=RPP==Z=1E-6)==1.127=UMR==.4u5=nLF==.u5=/1Y==.059
PPM = 9.549* VM/RM
                                         MAIN POTOR RPM
QM2 = 5250 #HP1/RPM
IY = .62966-2*#0h**1.635
FLD = .12*(mpL+mHUE)*BF
MIR = KIK+1E-c+1RI+C+N+V+++21++1.29
                                                               _IAIL_ADIOR_
F = .U92#RM##.651
N = 1.062*KT**.773
HHS = .Ju490ATF00.50t TF001.780(D*010)00.20TAF00.20

HTF = 1.4330EM001.53 HDFIZONTAL STAPILIZER CALCULATIONS
"TF = 1.4330EH001.53
LTF = .95*RM**1.02
KLU = LU*(a+F)
FUS=KFUS=KLU==.03=L===.05=KGheCMR==1:.15/((MOH=NTRD)==.23= TE==.62=1x==.38)
LU = .255*kM**1.474 FUSELAGE LENGTH
                                                    FUSFLAUE METURT CALCULATIONS
F_=_2053+1A**.115__
                       _ FUSELAGE_ hIGT+, MAX_
1x = .221E-3*MJ#**1. 907
                               RCLL INEFTIA
H = .+05+SINH*+1.224 FLSELAGE HEIGHT, MAX
Slbn = = 9810nn00,743
                          = LC1A*SIYD--USE SINH NEEN CUIA*SING UNAYCHN_
WTRU = .41*#4*1.75 PAIR MEEL TREAC
TTR = 13392. = 6 # KP27 (RP##R#)
LTPP = 1.574 (TAPES. STRTAFES. 134FUS .44/(QMP/(TTRELTB)) .45
PT = .Ub7*xM**1.22 TAIL POTCE RACIUS
LT8 = 36.07/RM**.273 LENGTH OF TAILHOOM
HPY = .003*HA**.79*TTP**.42*TPY**.24
                                                            PYLUN MEIGHT
                                                 PYLON PROFILE AREA
PA = .36=( 5-RT+LTkp)==.46-TPY==.74
#LG1 = .150+*KLG*MDW*** 974(AG+2)**. A1* #TRD**2,48/(X**.46
FC = .50df-0*NG#*1.07*NCF**.3C*VM**1.69842**.45/LdlA**.69
LDIA = 1.717*KM**1.00F
WES = QUOSEK HACE IFUS + AFUS + AFYLES + 25 (WENG/ENF) = 1.00 + VNOO + 71/MP200 + 55
      = .279*HP2**.235
FNF
VA = 26.51. HP2. - 257 ERF. - 37
                                              NACELLE VCLUME
WPTS = .4.34c - 3*DMN- **].82*NCF**1.65*(1.23*PM1**3.87/WM1**.66/K***,14
GMR1 = 52.5U**F1/RPM MAIN RCTCR TCRCUE/100
PF = 2.5.7/KP#4.174
                                  MAIN TRANSMISSION REDUCTION MATIO
#FAL = .Ulb=ENE+.0P=#ENG+*1.93/HP2+*.59 ENCINE ALCESSURY #EIGHT ACS = .25+#LS EGCLING SYSTEM HEIGHT
HIS = .0145+K++4. F* mPTS**.195*EAP**1.01
                                                                   LUBRICATION SYSTEM
hFS = 3.60CAPON.71 FLEL SY:
HFC = 3.75*ENF**1.63*.2*PM**.61
                          FLEL SYSTEM
hSS = 3.10#15rr/HP21##1.11#? mENG/ENF1##1.37
                                                   STARTING SYSIEM
```

SHP = .U245*HP2**.637 STARTING HGRSEPCWER PXS1 = 0.2415*HP5**.75 MAIN TRANSHISSION
QMR5 = 525U #HP2/RPM
ACPV = .ul27##WR6#*.766 ACCESSERY DRIVE PROVISION
AMEG = 5250* HP1/RPH
with = Kitre_mk2**.625*ITR INTERMEDIATE TAIL ROTCE GEARBOX
Q4R2 = .079unk
MTRD * KJRD*#MA3**,65 TAIL RCTOR GEARBOX
- CMP3 = .15+UMR - NTR5 = KTR5+16-2+CMF3++.21+(1%23+RM)++1.64
MEDS = 19.1570(040/1000)00.170EN001.25 ENGINE LATVE SHAFT
MPP = .219eUPA==.44=DP4==.10=EPK
GPM = BDLOKMOO2/9273.6 MAIN ROTOR FCLAR INERTIA
APH = 46.52*ACPY**.0593*JPL AUFILIARY POWER PLANT GROUP
HFIX = .17d=5=CP==.32+(LL*(n+H))++.14+CP++.04+ENF++2.0/NGH++.62 FIXEC MEIGHT
NGm = 2.145*MO#**.993 NCRMAL GRESS BEIGHT
CM = 1.33 MULA ST. USE NIGHTED VALUES IF KNCHN hoth = mbl + mmu2 + FLD
TAIL = aTR + ahS
ADDY = EUS + AEUS + MPY
ASE = .15 * FC
NFC = FC + ASE
PEOP = ment + SOG + MEAC + MCS1 + MES1 + MES + MEC + MSS + MUS
LPC = aCS2 + aLS2
nDS = mAS + ACPV + WITR + hTRB + WTRS + LPC + hEDS + mAS + wAB
NEA = wind + wexh
mfM = mrIn+IAIL+ECOY+mLG1+mFC+mES+PRCP+mFIX+APU +mING
hCS1 = a15 + mLS
hLS1 = .c0 * aLS
MFS = 3.599 * CAP**.711
hPS = 16 * nAS1
nFXM = .47 * nEAC
4 Ny = 4 A 3p + Sp
hCS2 = .1 * mLS
nt S2 = .4 = mLS

THE PROPERTY OF THE PROPERTY O

26 1 644014 00704	
<pre>JF = 1 FULDING ROTOR</pre>	
BPK = 1 RUTOR BRAKE	
KFUS= .0328 CutvFNTICYAL GEARED	
LLYVENTICYAL GEARED	_
KITE = .2298 STATISTICAL BASELINE CONSTANT FUN INTERMEDIATE T. ROT. G	
KTR8 = .2279 TAIL ROTOR GEARBOX LUASTSTAT. 84SELIN KTRS = .058 TAIL ROTOR DRIVE SHAFT CONSTSTAT. 9ASELIN	t c
VK = 1	_
NULT = 4.5	
TAF = 13	_
TPY = 62 KLG = .u329	
AG = 1	
KNAC = .96	_
CP = 2	
<u>\$96 = 0.0</u>	
SW = 0 TPU = 0	
	_
	_
	-
	_
	—
•	

		_		
AUDGLE NAME = CROSS REIGHT COMMAN #EM##EL#CR##PL#Gh				
GN = ACH + RFL + MCR + MPL				
		 		
				. ———
		-		
			 -	
			 .	
	-	-		
				

					-		
	#PL = 2640						
	 .						
							
					·		
							
		· 					
					- · · · · · · · · · · · · · · · · · · ·		
 -	· 	. 					
							
	· · · · · · · · · · · · · · · · · · ·						
						. 	
						· · · · · · · · · · · · · · · · · · ·	
	*						
				<u> </u>			

MODULE NAME × STORE CLD DATA
COMMIN APLACIANS GAGRALEMARIOSALIQUOATOS COSGROS MERC
inplu = mpl
TLK = CTJ1
00 = 4
GmO = Gm
= \$92 = aca
Sattle = NEM

ATAO SIZE DATA	
COMMON ALTIDATIVEC, PMIDLITUREN GN	
COMMON ALTO, DATO, CO, CIGRO, GRINEMENZ, NEP	
COMMON MPL, MPLO COMMON JOXA, 1040	
MPL = MPLU	
ତ୍ର ୭ ୪୦	
G± = G±0 UEM = S±EMO	
ALT = (18XA-1841800)	
DAT = 43 - 1001620	
	
	

MODULĖ	NAME = ANAL HEIGHT
	HAMUK VAMESGAMRTRA NEMA COAMEM2
	um + Gm J + bUDY
	TAIL, mLG1 mxS.WCS
DEL =	(J-UU) \$12 CHANGE IN TORQUE IN IN-L6
QILB =	(y-yu)+12 CHANGE IN TORQUE IN IN-L6 y+12 TORQUE IN IN-LB
DELL =	IABLE DELICOLAR
	TABLE BLAD(GILB)
UE43 =	Gm/GmJ-1 mim +(nGDY+TAIL+WLGIL+DFL3 + CFL1+DFLG+WQ\$/WX\$ + wFL2+GFLG
M <u>LJL_=_</u>	RELIVED TO THE CASE OF THE PARTY OF THE PART
·	

	MODULE NAME = GROSS HEIGHT THO COMMUN HEMZ-MELL-MPL-MCR-Gh
	GW = ACM2+WFL1+RPL+WCR
-	
	•

·	
MODULE NAME = PAYLOAD COMMON MATU. ALTO. VRC. PM. Gh. R. PRA. Ghl. hPL1. HEM2	
COMMON WFL1+mCK COMMON mPL2 +Gm2+mFL2	
<u> </u>	
DR = PR/TR PTO1 = PRA+PR=(1-2_D6*(IP-11)	
DL1 = Gm/(3。14169R##Z) GW1 = PTU1#(1-PM/10U)/(。G51#(CE1/DF1##=41+2。424E—50VKC)	
MPLI = Upl=pEM2-bCR-pEL1 mPL2 = Gm2 - mEM2 - mCR - hFL2	

MODULE NAME = ERROR CCMMON ERRARPLUSHPL1					
COMMUN G# Gk = Gm + 1.5*(#PL6-RP! FPR = ((#PLU-APL1)*(#P!	L2)	. •		·	
					·
					
·		· · · · · · · · · · · · · · · · · · ·			
				······································	
				· 	
					
				· ····································	
					
				·	
					
					

MODULE NAME = PAPC COSTS COMMUN NEMBERSTASSPEASIEN SYARSSLONEM CONTACTO
HA = 126 +.745**EM CET = 1.21 * HA*(220/NP + .75*NP**15)
(# = 9.31c-/)##4#T45**1.24*NP**-,12 Cc =PR4*(58 - 6E-3*PRA/NEN)
IF PRA 1501 3500-CE =NENGL1-295E5 + 3741PRA/NEN -350011 CG = -3760 + 4-75#WA CP = CET + CL + CM + CE + Cf
CI = .010CP CA = YMR*CP*SL/NP CC = 101 + 3.325E-3*#F*

				
XAML = BRAY BUUGON H938NG.I = XAMLS				
IJFMA_S_AM/, RUEFI	· · · · · · · · · · · · · · · · · · ·	·		
				
				
	,			
		-	=	**

MODULE NAME = PAYLOADS	
COMMON PUF . APLZ . PL. I	
PPL = TABLE PYLD(1)	
PL = PPL/100*#PL2	
PUF = JASLE PUF111	
FOF - FOF / 100	
The same of the same statements of the same statement of the same	
- Application to the second of	
The state of the s	
	

MODULE NAME = OGMS	\$91			
			 	
				
			 	
				
			·	
		·· ·····		
				·
				
				
				

 ₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽
 COMMON SEE UM DON MEM SPIA MEE SLOCPFH CD.
 OLF = Ga/JGH IN = 0077c + 5544/#EM
T = .593*TN/(ICLF + .0177)/1.151**3 CFM = TN/T*(-57.4 + .05362*MEN)
COPL = Th/I+116.14 + .CO233*NEM). 15 mm ISLT 3200, CFM = Th/T+(.00191*NE***1.323) IF mm ISLT 3200, COPL =Th/T+(1.016*NE***.4)
 CMI = LFM + CQPI CPFH = &CPIA/(12*FH*+SEI) + CC + CMT
CFUL = AFL/6.5%.25 CPFH = LPFH + CFUL*SO/TTIP
PRINT CPIA,CFM.CD.CFUL.TTIP

"GOULE NAME = HOVER PROS
CTYUN THAK. LHAX. DPH.DL.Ch.DGh.VRC.PFA.PM.AI.PI.A.J.PIU
INITIALIZE J = 0,4 = 0,PT = 0,CELT = 1
PH = 1 - Jeuph
— H.≥ IAOLE HPROLPH)
TMAX = TABLE IMAX(M)
APR = (1 - H/14-300) ** 5, 255
CUNI = UL = Gn-+3.437/(DGNAPR)
CON2 = 47.516-5*VFC*Gh
COM3 = PK1*APK*(1-PM/100)
419 =1.491J24524((COX1 = A TR) = = .41 + CCN2 1/CCN3
ATR =1.4a13245241CCCN1*ATR1**.41*CCN2*/CCN3
41R =1.451424526((CCN1+ATR)++.41+CCN2)/CCN3
ATR =1.461U2452*((CCA1*ATR)**.41*CER21/CCR3
AIR_=1.551=.u2452*(1CCN1*4IR)**.41*CCN2)/CCN3
ATT = ((PTO=(1-PM/100)-2.42E-5=G=>\RC1/(.051=G=))==(1/.4.1/(CL=G=/(DG=0APR))
IF AIT IS LT AYR, ATR = ATT
EI = 486.16 • AIR -273.16
PT1 = PT
ATI = AT
<u>IF AIL is LI -23, 4IL = -23</u>
PT = TABLE TPRO(ATL: H)
1 = 0+H9(1-(HI+PT11/2) + A
1F J 1: EJ 0 . A = 0
IF AT IS OT THAK . DELT = 0
IF J IS GT JMAA, J = J - DELT
- L = L + VELI
ITERATE ON J . STOL = .5

CONTROL MODULE FOR TRANSPORT MODEL 1 -- COMMON GWANFLTWFL 1. NFLZ; ERR 2 COPPEN SWI.GWZ.WPLG.WPLI 3 COMMON PTO, PRA. SFO 4" COMMON GHO, WENT 5 COMMON WEM. NP. TAS. MEN. YAR. SL. N. DPL. WCR. WFL. DPH. PRA. DGW. MFH COMMON-R.PTC.SFO.F -- 7 - COMPON INDX.DISC.AUT.CAT---8 COMMON IDXA, IDXO 9 COPMEN MPLZ 10- POINT CHE 11 RUN MOD SIZE 12 RUN MOD T O ALLOWANCE - 13 -RUN MOD-CUIPS-RUN MOD CRUISE AT MCP RUN MOC FLICHT IDLE 15 15 RUN MOD CLIPS-RUN MOD MAX RANGE 17 RUN POD TOTAL FUEL 18 19-RUN HOD-STAT WEIGHT -20 RUN MOD GROSS WEIGHT ITERATE ON GN. FROM ONE. ATOL = 20 21 22 -WFL1 = WFL 23 RUN MOC STORE OLD CATA PRINT ALT-DAT 24 -25--PRINT GY. WEP; WFL; WPLO, PTO; PRA, SFG -26 RUY MOD JHAX 27 POINT POAT 28" POINT PALT" -29 RUN MOD NEW SIZE DATA 30 ITR = 0 - 31--POINT TWO -----RUN MOD SIZE RUN MOD T C ALLGWANCE 32 33 RUN MOD-CLIMB -RUN HOD CRUISE AT HCP 35 RUN MOD FLIGHT IDLE 36 37 RUN MOD CLIFS--38 RUN HOC MAX RANGE RUN MOD TOTAL FUEL 37 40 WFL2 = WFL-41 RUN NOD ANAL WEIGHT 42 GNS = GR 43- RUN HOD GROSS WEIGHT- TWO-44 SW1 = SW 45 RUN HOD T C ALLOWANCE - 46 - RUN MOD -CL-IPS-47 RUN POD CRUISE AT MCP 48 RUN MGD FLIGHT IDLE - 49-- RUN MOD CLIPS-50 RUN HOC MAX RANGE RUN MOD TOTAL FUEL RUN POD-PAYLOAD ----52 RUN MOD ERRCR 53 ITR = ITR + 1 55- IF ITR IS GT MXTR, -GC TO-THRE---S6 IF ERR IS GT 20. GOTG TWO ST POINT THRE - 58-PRINT-ALT+GAT=\$TR -- -59 PRINT GWL. ShENZ, WFLL, bPLL. PTG. PRA. SFO

60	PRINT GHZ, WFLZ, UPLZ
	RUN HOD PAPE COSTS
よ ラ	\$1 × 6
33-	-1005
	POINT FOUR
85	\$I = \$I + I
	RUN MOD-PAYLO405
67	ITAT = 0
- 68 - 49:	POINT FIVE
34	SON NOD C STEDNINGE
	RUN MOD CLIPS
72-	RUN MOD CRUISE AF MCP
73	RUN MCD FLIGHT TOLE
74	RUN MOD CLIPB
75 -	RUN EGO HAX RANGE
	RUN MCD TOTAL FUEL
	ITAT = ITAT + 1
	-ITERATE OF SHELFPTOL=IFFRCH-PIVE
	RUN MOD MAINT COSTS
85	RUN HOD HOVER SADA
_ 31.	AUN FOD HET
32	PRINT SOCE, SMEI, SCPFH, SPUF, SPHOV, SPL, SGW, SCLF
	IF SN ISGT SI, CO TO FCUR
	ITERATE FRCP PALT, TIMES = 5
•	Trends they thery are y
	-
	The second secon
-	

CONTROL MODULE FOR OBSERVATION MODEL COMMON GH, WFL, WFL1, WFL2, ERR COMMON GHI, GHZ, WPLC, WPL1 COMMON PTO, PRA, SFO -----MEN.CWD NOMYOD COMMON WEM, NP. TAS. NEN. YAR. SL. N. CPL. WCR. WFL. DPH. PRA. CGW. MFH COMMON R.PTO.SFO.F----COMMON INDX DISC , ALT , CAT COMMON IDXA, IDXO COMMON-MPES 10 POINT ONE 11 RUN MOD SIZE RUN-MOD HISSION-FUEL----RUN MOD STAT WEIGHT 13 RUN MOD GROSS WEIGHT 14 15 ITERATE ON GW, FROM ONE, ATCL ---- 20---HFL1 = WFL 16 RON MOD STORE OLD CATA 17 PRINT-ALTIDAT -- ---PRINT GH. WEF. WEL. WPLO. PTO. PRA. SEO 20 POINT POAT POINT -PALT -RUN MOD HEW SIZE DATA 22 ITR = 023 24 POINT -TWO-RUN MOD SIZE 25 RUN MOD ANAL WEIGHT 26 RUN MOD-MISSION-TIME----HFL2 = HFL 29 GW 2 - GW 30 RUN- MOD GROSS WEIGHT- THO-31 GW1 = GW RUN HOD MISSION FUEL 32 -33 WFL1 = WFL-RUN MOD PAYLOAD 35 GW = GW2 RUN MOD-ERROR --ITR = ITR + 1IF ITR IS GT MXTR. GC TO THRE IF ERR IS GT 20. GOTG THO-38 POINT THRE 41 PRINT ALT. DAT- TTR PRINT GHI, SHENZ, WFLI, HPLI, PTO, PRA, SFO PRINT GW2.WFL2.WPL2 DGW = GW2 HEM- - WEM2. -45 DPL = WPL2 47 GM = CMS 48 SEUF = 1. **SOCE = 0** RUN MOD PAPC COSTS 50 51-RUN HOD-HAINT COSTS RUN HOC MEI 53 PRINT SOCE, SMEI, SCPFH, SMIST, GW IDXA = IDXA + 1ITERATE FROM PALT. TIMES = 5

CONTROL MODULE FOR CRANE MODEL 1 COYADN GARAFLINFLIRAFLZ, ERR COMMEN GHI,GHZ, WPLO, WPLI COMMUN PTU, PRAISED - --COMMON GAD, MEM COMMUN WEMONPOTAS ON ENOYAR OSLONOPLONOR ONEL OPHOPRACUGNOMEN CCMMON INCX, CISC, ALT, CAT OXUL, AXGI ACPPOD --- 9 - COMMON -WPL2--------------------10 POINT ONE 11 RUN MOD SIZE -12 - RUN MOU-FLIGHT IDLE----------13 RUN MOD T O ALLOWANCE 14 RUN MOD FOVER -15- RUN MOD-MAX RANGE-----16 GW = GW + DPL 17 F = F + CF ---18---RUN-H00-H0VER- 19 RUN HUD MAX RANGE 20 RUN MOD TOTAL FUEL -21-RUN HOO-STAT REIGHT------22 RUN MUJ GROSS MEIGHT ITERATE CN GA, FROM ONE, ATOL = 20 23 25 RUN MOD STURE GLD DATA PRINT ALT, DAT POINT PALT -30 FUN-HOU HER SIZE DATA - -----ITR = 0 31 POINT TAD -33 - RUY MOU-5126-34 RUN MUD FLIGHT IDLE PUN MUL T O ALLOHANCE -36- RUN MÖD-HUVER-37 RUN MOD MAX RANGE 38 GH = GH + DPL -39-f-e-f +-DF-- --40 RUN HUL HUVER RUN HOD HAX RANGE 41 RUN-MOU-TUTAL-FUEL----43 WFL2 = WFL RUN MUD ARAL WEIGHT 44 - 45 -GH2 -- GH-----46 RUN MIJD GRUSS WEIGHT THO 47 GW1 = GW -48--RUN-MoD-FL-IGHT-IDLE-PUN MUD T O ALLOHANCE PUN MOD HOVER 50 52 GH = GH + DPL 53 F = F + 7F -54 -PUN HUD-HOVER-55 RUN MUD MAX RANGE 56 RUN MOD TOTAL FUEL -57- HFL1 -- HFL -- --58 PUN MUD PAYLOAD

59

GW = GHZ

50	PUN HOD ERRUR
61	1TR = 1TK + 1
- 62	IF-ITH IS GT MATR; - GC TO THRE-
	IF ERR IS GT 20. GOTC THO
64	POINT THRE
	PRINT ALT, DAT, ITR
66	
67	
	DGM GHZ
70	HEM = HEM2
70	DPL = mPL2
· 7 1·	-RUN HOU PAPCCUSTS
72	RUN MOD JMAX
73	si = 0
-74	\$0CE-=-0
75	POINT FOUR
	\$1 = \$1 + 1
	RUN MŪD PAYLOAUS
78	ITAT = 0
79	POINT FIVE
	RUN-MUD OGNS
81	RUN MJD FLIGHT IDLE
82	RUN HOD T U ALLOMANCE
-83	RUN HOU HUVER
04	RUN MJD HAK RANGE
85	Gw = Gw + DPL
96	F- 0- F- 0 F
87	
ρą	RUN MOD MAX RANGE
-	RUN HUS TOTAL-FUEL-
90	ITAL = ITAL + 1
91	ITERATE UN ABFL.PTOL=1.FRCP FIVE
92	RUN HUD MAINT COSTS
93	RUN KUU HUVER PROB
94	RUN MOD MEI
	PRINT SUCE, SMEI, SCPFH, SPUF, SPHCV, SPL-SBW, SGLF
95	IF \$N ISGI \$1.60 TO FOUR
97	IDXA = ICXA + 1
· 9 8	ITERATE FRUM PALTYTIMES -5
9¢	IDXA = 1
100	IDXO = 10XO + 1
101-	-TERATE-FRON-POATY-TIMES2
	·

CONTROL MODULE FOR GUNSHIP MODEL COFMON GW, WFL, WFL1, WFL2, ERR COMMON GET. CHZ. WPLC. WPLT 3 COPMON PTG, PRA, SFO MEM +OND NEWADO COPHON WEN. NP. TAS. NEN. YAR. SL. N. DPL, HCR, HFL, DPH, PRA, CGW, HFH COMMON R.PTO.SFO.F COPMON INDX,DISC,ALT,CAT COFFCN IDXA.IDXO 3 - COMMON MPLZ 10 POINT ONE 11 RUN MOD SIZE RUN MOD CRUISE HOVER AND WHAX " 13 RUN HOD MAX RANGE RUN MOD TOTAL FUEL RUN MODISTAT WEIGHT RUN MOD CROSS WEIGHT 16 ITERATE ON GW, FROM ONE, ATOL = 20 17 WFLL" = LFU RUN MOD STORE OLD DATA PRINT ALT, OAT 19 20 PRINT GW. WEMTWECT WPLO, PTOTPRA, SEOT POINT POAT POINT PALT 22 23 24 RUN HOC NEW SIZE CATA-25 ITR = 0 POINT TEG 26 RUN MOD SIZE 28 RUN HOC CRUISE HOVER AND VMAX 29 RUN MOD MAX RANGE RUN MOD FOTAL FUEL WFL2 = WFL RUN POD ANAL WEIGHT 32 33 CMS. = CM RUN MOD GROSS WEIGHT TWO 35 GW1 = GW TRUN FOD CRUISETLEYER AND WAX -- - --36 37 RUN MOD HAX RANGE RUN HOD TOTAL FUEL 38 .34 "WFL'1" = "WFL" 40 RUN HOD PAYLOAD 41 GW = GW2 42 RUN HOC EXKOR 43 ITR = ITR + 1 IF ITR IS GT HXTR, GC TO THRE -45 POINT THRE PRINT ALT, DAT, ITR 47 ***8*** PRINT GHITSWENZTWELLTWPLTTPTC.PRA.SFO --PRINT GWZ, WFLZ, WPLZ 49 DGW = GW? **50** MEN. = MENS. 51 52 DPL = WPL2 RUN HOD PAPC COSTS دد 54 35 \$1 = 0 SOCE = 0 56 POINT FOUR 57 58 si = si + 1RUN MOD PAYLOADS 59

	,
60	ITAT = 0 POINT FIVE
-62 63	RUN MGD OGWS RUN MOD CRUISE HOVER AND VMAX
64 65	RUN FOD MAX RANGE RUN MOD TOTAL FUEL
	ITAT = ITAT + 1 ITERATE ON SUFE, PROL=1, FROM FIVE
63	RUN MOD HOVER PROB
71	RUN HOD MEI PRINT SOCE SMEI, SCPFH, SPUF, SPHOV, SPE, SGW, SOEF IF SN ISGT SI, GO TO FCUR
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ <del></del>			
MODULE NAME = MEI SPHJY = 1 - SA			
SMEI = "/L#\$PHUV			
SOCE = SOCE+SMEI/SCPFH+SPUF			
		- <del> </del>	
			. <del> </del>
	·	<del></del>	
	· <del></del>		<del> </del>
			<del></del>
	<del></del>		

### LIST OF SYMBOLS

joint probability plot area Α ALT altitude, ft atmospheric pressure ratio APR AR aspect ratio atmospheric temperature - °F ΑT ATR atmospheric temperature ratio blade loading - lb/ft2 BL attrition costs - \$ CA CB main rotor blade chord - ft CC crew costs - \$/flight hr direct costs - \$/flight hr CD engine cost - \$ CE cost of engineering and tooling - \$ CET CFM field maintenance cost - \$/flight hr CG cost of GFE - \$ CI initial spares cost - \$ cost of labor ~ \$ CLcost of materials - \$ CM total maintenance cost - \$/flight hr CMT COPL overhaul parts and labor cost - \$/flight hr total aircraft production cost - \$ CP total cost per flight hour - \$/flight hr CPFH production, initial spares and attrition costs - \$ CPIA

fuel cost - \$/flight hr

CPOL

DE design value of endurance - min

DGW design gross weight - 1b

DIS distance - n mi

DL disc loading - lb/ft²

DLN normalized disc loadiny - DL/DR

DPH incremental altitude probability width

DPL design payload or change in payload - lb

DR density ratio -  $\rho/\rho_0$ 

E endurance - min

EN number of engines

EUF endurance utilization frequency

F equivalent flat plate drag area - ft²

FL mission segment fuel load - 1b

FOW ratio of drag area times DR to GW - (F) (DR)/GW

FRC forward rate of climb - ft/min

GW gross weight - lb

GWO single-point design gross weight - 1b

GWl first design point gross weight - lb

GW2 second design point gross weight - 1b

H altitude - ft

HP horsepower

KPP power reduction - MRHP/SHP

MEI mission effectiveness index

MFH average monthly flight hours - hr

MOW maximum overload gross weight, 1b

MRHP main rotor horsepower

N number of payload increments

NEN number of engines

NMR number of main rotor blades

NP number of ships produced (fleet size)

OAT outside air temperature - °C

OCE overall cost effectiveness index

OE operating endurance - min

OLF overload factor - %

OPL operating payload - lb

PA power available - hp

PHOV hover probability

PM power margin - %

POW power-to-weight ratio - MRHP/GW

PR pressure ratio

PRA intermediate rated power of engine @ SL, 59°F - hp

PRF referred power - hp

PRQ power required for level flight - hp

PT temperature probability

PTO power at transmission torque limit - hp

PTl previous value of PT

PUF payload utilization frequency

Q torque limit of transmission - ft-lb

QMR main rotor torque - ft-lb

R main rotor radius - ft

RA maximum continuous power rating factor

RCP percent fuel for reserve - %

R/C rate of climb

RPL relative payload (to design)

S solidity =  $\alpha$ 

SAR specific air range - n mi/lb

SAS stall limited air speed - kn

SFC specific fuel consumption - lb/hr-hp

SFO specific fuel consumption at PRA - lb/hr-hp

SL system life - years

SM airspeed margin to stall - kn

SSF normalized specific fuel consumption

T actual average MTBF - hr

TAS true airspeed - kn

TIM time - min

TMAX maximum temperature at a given altitude - °F

TN normal average MTBF - hr

TR temperature ratio

TS main rotor tip speed - ft/sec

VRC vertical rate of climb - ft/min

WA AMPR weight - 1b

WCR weight of crew - 1b

WEM empty weight of ship - 1b

WFL fuel weight - lb

WPL payload - 1b

YAR average yearly attrition rate - no./yr

 $\Omega$  rotor speed - rad/sec